Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 32(16): 165902, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-31658458

RESUMEN

Wannier90 is an open-source computer program for calculating maximally-localised Wannier functions (MLWFs) from a set of Bloch states. It is interfaced to many widely used electronic-structure codes thanks to its independence from the basis sets representing these Bloch states. In the past few years the development of Wannier90 has transitioned to a community-driven model; this has resulted in a number of new developments that have been recently released in Wannier90 v3.0. In this article we describe these new functionalities, that include the implementation of new features for wannierisation and disentanglement (symmetry-adapted Wannier functions, selectively-localised Wannier functions, selected columns of the density matrix) and the ability to calculate new properties (shift currents and Berry-curvature dipole, and a new interface to many-body perturbation theory); performance improvements, including parallelisation of the core code; enhancements in functionality (support for spinor-valued Wannier functions, more accurate methods to interpolate quantities in the Brillouin zone); improved usability (improved plotting routines, integration with high-throughput automation frameworks), as well as the implementation of modern software engineering practices (unit testing, continuous integration, and automatic source-code documentation). These new features, capabilities, and code development model aim to further sustain and expand the community uptake and range of applicability, that nowadays spans complex and accurate dielectric, electronic, magnetic, optical, topological and transport properties of materials.

2.
Philos Trans A Math Phys Eng Sci ; 376(2134)2018 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-30373940

RESUMEN

In this paper, we demonstrate computationally the existence of magnetoelectric multipoles, arising from the second-order term in the multipole expansion of a magnetization density in a magnetic field, in non-centrosymmetric magnetic metals. While magnetoelectric multipoles have long been discussed in the context of the magnetoelectric effect in non-centrosymmetric magnetic insulators, they have not previously been identified in metallic systems, in which the mobile carriers screen any electrical polarization. Using first-principles density functional calculations, we explore three specific systems: first, a conventional centrosymmetric magnetic metal, Fe, in which we break inversion symmetry by introducing a surface, which both generates magnetoelectric monopoles and allows a perpendicular magnetoelectric response. Next, the hypothetical cation-ordered perovskite, SrCaRu2O6, in which we study the interplay between the magnitude of the polar symmetry breaking and that of the magnetic dipoles and multipoles, finding that both scale proportionally to the structural distortion. Finally, we identify a hidden antiferromultipolar order in the non-centrosymmetric, antiferromagnetic metal Ca3Ru2O7, and show that, while its competing magnetic phases have similar magnetic dipolar structures, their magnetoelectric multipolar structures are distinctly different, reflecting the strong differences in transport properties.This article is part of the theme issue 'Celebrating 125 years of Oliver Heaviside's 'Electromagnetic Theory''.

3.
J Microsc ; 265(2): 222-231, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28094864

RESUMEN

Arrays of aligned nanorods oriented perpendicular to a support, which are accessible by top-down lithography or by means of shape-defining hard templates, have received increasing interest as sensor components, components for nanophotonics and nanoelectronics, substrates for tissue engineering, surfaces having specific adhesive or antiadhesive properties and as surfaces with customized wettability. Agglomeration of the nanorods deteriorates the performance of components based on nanorod arrays. A comprehensive body of literature deals with mechanical failure mechanisms of nanorods and design criteria for mechanically stable nanorod arrays. However, the structural integrity of nanorod arrays is commonly evaluated only visually and qualitatively. We use real-space analysis of microscopic images to quantify the fraction of condensed nanorods in nanorod arrays. We suggest the number of array elements apparent in the micrographs divided by the number of array elements a defect-free array would contain in the same area, referred to as integrity fraction, as a measure of structural array integrity. Reproducible procedures to determine the imaged number of array elements are introduced. Thus, quantitative comparisons of different nanorod arrays, or of one nanorod array at different stages of its use, are possible. Structural integrities of identical nanorod arrays differing only in the length of the nanorods are exemplarily analysed.

4.
Phys Chem Chem Phys ; 17(35): 22548-51, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26284789

RESUMEN

We re-examine the electronic response of the Chevrel phase Mo6S8 upon Mg intercalation. The ground state Mo6S8 is metallic and exhibits strongly localized electronic screening of Mg(2+) ions. This localized screening cloud effectively shields the 2+ charge carried by Mg ions on the length scale of one unit cell and facilitates Mg ion diffusion.

5.
Langmuir ; 28(29): 10781-8, 2012 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-22746364

RESUMEN

The tip shape of contact elements in hairy adhesion systems is crucial for proper contact formation and adhesion enhancement. While submicrometer terminal contact elements show much better adhesion performance than their larger counterparts, shaping their tips so as to maximize normal adhesion has remained challenging. We prepared durable nanorod arrays consisting of stiff, highly entangled thermoplastic polymers with rationally shaped tips by replication of anodic aluminum oxide (AAO). Nanorod arrays with pancake-like tips showed pronounced normal dry adhesion already for small loading forces. For small loading forces, adhesion forces significantly exceeded the loading forces. Both the absence of hysteresis in force/displacement curves and the pronounced durability of the nanorods in series of repeated attachment/detachment cycles suggest that the nanorods behave like elastic springs. Experimental load-adhesion curves were reproduced with a modified Schargott-Popov-Gorb (SPG) model, assuming that contacts between probe and individual nanorods are sequentially formed with increasing indentation depth.


Asunto(s)
Nanotecnología , Nanotubos/química , Polímeros/química , Temperatura , Óxido de Aluminio/química , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA