Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Control Release ; 322: 137-148, 2020 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-32145266

RESUMEN

Theranostic nanocarriers of antivascular drug encapsulated in thermosensitive ultramagnetic liposomes can be advantageously designed to provide a locally high concentration and an active delivery, with image-guided Magnetic Resonance Imaging (MRI) so as to reliably cure tumor. We propose a novel therapeutic strategy consisting of the magnetic accumulation of Ultra Magnetic Liposomes (UML) followed by High-Intensity Focused Ultrasound (HIFU) to trigger the release of an antivascular agent monitored by MRI. For this purpose, we co-encapsulated Combretastatin A4 phosphate (CA4P), a vascular disrupting agent, in the core of UML to obtain CA4P-loaded thermosensitive Ultra Magnetic Liposomes (CA4P-UML). To assess the HIFU parameters, the CA4P release has been triggered in vitro by local heating HIFU at the lipids transition temperature. Morphology of endothelial cells was assessed to evaluate the effect of encapsulated versus non-encapsulated CA4P. The efficiency of a treatment combining the magnetic targeting of CA4P-UML with the CA4P release triggered by HIFU was studied in CT26 murine tumors. Tumor perfusion and volume regression parameters were monitored by multiparametric quantitative anatomical and dynamic in vivo MRI at 7 T. Additionally, vascularization and cellularity were evaluated ex-vivo by histology. This thorough investigation showed that the combined treatment exhibited a full benefit. A 150-fold improvement compared with the chemotherapy alone was obtained using a magnetic targeting of CA4P-UML triggered by HIFU, and was consistent with an expected effect on vascularization 24 h after treatment.


Asunto(s)
Liposomas , Estilbenos , Animales , Medios de Contraste , Células Endoteliales , Imagen por Resonancia Magnética , Ratones , Medicina de Precisión
2.
Mol Imaging Biol ; 21(2): 269-278, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29942990

RESUMEN

PURPOSE: The development of theranostic nanocarriers as an innovative therapy against cancer has been improved by targeting properties in order to optimize the drug delivery to safely achieve its desired therapeutic effect. The aim of this paper is to evaluate the magnetic targeting (MT) efficiency of ultra-magnetic liposomes (UML) into CT26 murine colon tumor by magnetic resonance imaging (MRI). PROCEDURES: Dynamic susceptibility contrast MRI was applied to assess the bloodstream circulation time. A novel semi-quantitative method called %I0.25, based on the intensity distribution in T2*-weighted MRI images was developed to compare the accumulation of T2 contrast agent in tumors with or without MT. To evaluate the efficiency of magnetic targeting, the percentage of pixels under the intensity value I0.25 (I0.25 = 0.25(Imax - Imin)) was calculated on the intensity distribution histogram. RESULTS: This innovative method of processing MRI images showed the MT efficiency by a %I0.25 that was significantly higher in tumors using MT compared to passive accumulation, from 15.3 to 28.6 %. This methodology was validated by ex vivo methods with an iron concentration that is 3-fold higher in tumors using MT. CONCLUSIONS: We have developed a method that allows a semi-quantitative evaluation of targeting efficiency in tumors, which could be applied to different T2 contrast agents.


Asunto(s)
Neoplasias del Colon/diagnóstico por imagen , Imagen por Resonancia Magnética , Magnetismo , Animales , Línea Celular Tumoral , Supervivencia Celular , Femenino , Liposomas , Hígado/metabolismo , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/ultraestructura , Ratones , Ratones Endogámicos BALB C , Células 3T3 NIH
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA