Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(24)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36556831

RESUMEN

The wetting behavior of liquid magnesium drop on pure tungsten substrates was investigated, for the first time, with the sessile drop method combined with non-contact heating and capillary purification of a Mg drop from a native oxide film. A specially designed apparatus dedicated to the investigation of the high-temperature interaction of dissimilar materials was used. The comparative experiments were performed under isothermal conditions at temperatures of 700 °C and 740 °C using two atmospheres: Ar + 5 wt.% H2 and pure Ar, respectively. During high-temperature tests for 180 s, the images of the Mg/W couples were recorded with CCD cameras (57 fps) from two directions of observation. The solidified drop/substrate couples were subjected to structural characterization using scanning electron microscopy (SEM) coupled with energy-dispersive X-ray spectroscopy (EDS). Under the applied measurement conditions, liquid Mg revealed non-wetting behavior on W substrates (a contact angle θ > 90°). The average value of the contact angle under the flowing Ar atmosphere at 740 °C was θav = 115°, whereas it was higher under the flowing Ar + 5 wt.%. H2 atmosphere at a lower temperature of 700 °C, showing θav = 122°. Independently on employed atmosphere and temperature, SEM + EDS analysis of solidified sessile drop couples did not display any new phases and mass transfer between the Mg drop and the W substrate, whereas the presence of discontinuities at the Mg/W interface of cross-sectioned couples were well-distinguished. Non-wetting and a lack of permanent bonding between the Mg drop and W substrates have a good agreement with the Mg−W phase diagram calculated with the help of FactSage software and FTlite database, i.e., the non-reactive nature of the Mg/W couple because W does not dissolve in liquid Mg and it does not form any compounds with Mg. These findings allow for the recommendation of tungsten as a suitable refractory material for long-time contact with liquid Mg in different container-assisted methods of materials characterization as well as in liquid-assisted processing of Mg components.

2.
Materials (Basel) ; 15(9)2022 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-35591453

RESUMEN

The process of platinum recovery from used car catalysts is highly desirable for both economic and environmental reasons. From the many available methods of processing used car catalysts, the article conducted both numerical and experimental studies using a device based on the collector metal method with lead as a modified medium through a magnetohydrodynamic pump for washing platinum from the channels of the ceramic catalyst carrier. It was assumed that lead alloys with the addition of lithium increase the extraction of platinum from thin catalytic layers and accelerate the platinum dissolution reaction in the Pb-Li alloy, which is the result of a greater affinity of lithium for platinum compared to lead. This assumption was verified by numerical simulations as well as laboratory tests. Tests were carried out for the secondary supply voltage range between 40 and 60 V and the catalyst flushing time between 240 and 480 s. Graphical results of the research were discussed.

3.
Materials (Basel) ; 14(3)2021 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-33540597

RESUMEN

Solution calorimetry with liquid aluminum as the bath was conducted to measure the enthalpy of a solution of magnesium and palladium as well as the standard formation enthalpies of selected magnesium-palladium alloys. These alloys were synthesized from pure elements, which were melted in a resistance furnace that was placed in a glove box containing high-purity argon and a very low concentration of impurities, such as oxygen and water vapor. A Setaram MHTC 96 Line evo drop calorimeter was used to determine the energetic effects of the solution. The enthalpies of the Mg and Pd solutions in liquid aluminum were measured at 1033 K, and they equaled -8.6 ± 1.1 and -186.8 ± 1.1 kJ/mol, respectively. The values of the standard formation enthalpy of the investigated alloys with concentrations close to the Mg6Pd, ε, Mg5Pd2, and Mg2Pd intermetallic phases were determined as follows: -28.0 ± 1.2 kJ/mol of atoms, -32.6 ± 1.6 kJ/mol of atoms, -46.8 ± 1.4 kJ/mol of atoms, and -56.0 ± 1.6 kJ/mol of atoms, respectively. The latter data were compared with existing experimental and theoretical data from the literature along with data calculated using the Miedema model.

4.
Materials (Basel) ; 15(1)2021 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-35009416

RESUMEN

In this paper, the hydrogen sorption properties of casted Ag-Mg alloys were investigated. The obtained alloys were structurally analyzed by X-ray diffraction (XRD) and observed by scanning electron microscopy (SEM). The study was carried out for four alloys from the two-phase region (Mg) + γ' (AgMg4) with nominal concentrations of 5 wt. %, 10 wt. %, 15 wt. %, and 20 wt. % Ag, four alloys with nominal compositions equivalent to intermetallic phases: AgMg4, AgMg3, AgMg, and Ag3Mg, one alloy from the two-phase region AgMg + Ag3Mg (Ag60Mg40), and one alloy from the two-phase region AgMg + AgMg3 (Ag40Mg60). The hydrogenation process was performed using a Sievert-type sorption analyzer. The hydride decomposition temperature and kinetic properties of the synthesized hydrides were investigated by differential scanning calorimetry (DSC) coupled with thermogravimetric analysis (TGA). Samples with high magnesium content were found to readily absorb significant amounts of hydrogen, while hydrogen absorption was not observed for samples with silver concentrations higher than 50 at. % (AgMg intermetallic phase).

5.
Data Brief ; 28: 104939, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31890791

RESUMEN

The Ag-Li system was analysed using first-principles calculations 10.1016/j.jallcom.2019.152811 [1]. The method included using density functional theory to optimize the crystal structure of the phases constituting the binary phase diagram by relaxing atomic positions, volume, and shape. The optimized structures were subsequently used to calculate thermodynamic properties at different temperatures; by determining the zero-point energy, the vibrational internal energy, and the entropy, the heat capacity at constant volume was obtained as well as the phases' stability limits. Furthermore, optimized structures were used to calculate the XRD patterns and to compare them with experimental data. All the referred data are now accessible to researchers and industrials demanding to work with binary and higher-order systems that include Ag and Li, for example, for energy storage. Binaries should be well assessed prior to higher-order phase diagrams and in that resides additional usefulness to this data.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA