RESUMEN
Aspergillus terricola and Aspergillus ochraceus, isolated from Brazilian soil, were cultivated in Vogel and Adams media supplemented with 20 different carbon sources, at 30 degrees C, under static conditions, for 120 and 144 h, respectively. High levels of cellulase-free xylanase were produced in birchwood or oat spelt xylan-media. Wheat bran was the most favorable agricultural residue for xylanase production. Maximum activity was obtained at 60 degrees C and pH 6.5 for A. terricola, and 65 degrees C and pH 5.0 for A. ochraceus. A. terricola xylanase was stable for 1 h at 60 degrees C and retained 50% activity after 80 min, while A. ochraceus xylanase presented a t(50) of 10 min. The xylanases were stable in an alkali pH range. Biobleaching of 10 U/g dry cellulose pulp resulted in 14.3% delignification (A. terricola) and 36.4% (A. ochraceus). The brightness was 2.4-3.4% ISO higher than the control. Analysis in SEM showed defibrillation of the microfibrils. Arabinase traces and beta-xylosidase were detected which might act synergistically with xylanase.
Asunto(s)
Aspergillus ochraceus/clasificación , Aspergillus ochraceus/enzimología , Celulosa/metabolismo , Endo-1,4-beta Xilanasas/química , Endo-1,4-beta Xilanasas/metabolismo , Madera/química , Endo-1,4-beta Xilanasas/aislamiento & purificación , Activación Enzimática , Estabilidad de Enzimas , Especificidad de la EspecieRESUMEN
This study describes the production of xylanases from Aspergillus niveus, A. niger, and A. ochraceus under solid-state fermentation using agro-industrial residues as substrates. Enzyme production was improved using a mixture of wheat bran and yeast extract or peptone. When a mixture of corncob and wheat bran was used, xylanase production from A. niger and A. ochraceus increased by 18%. All cultures were incubated at 30 degrees C at 70-80% relative humidity for 96 h. For biobleaching assays, 10 or 35 U of xylanase/g dry cellulose pulp were incubated at pH 5.5 for 1 or 2 h, at 55 degrees C. The delignification efficiency was 20%, the brightness (percentage of ISO) increased two to three points and the viscosity was maintained confirming the absence of cellulolytic activity. These results indicated that the use of xylanases could help to reduce the amount of chlorine compounds used in cellulose pulp treatment.
Asunto(s)
Aspergillus niger/enzimología , Aspergillus ochraceus/enzimología , Aspergillus/enzimología , Celulosa/metabolismo , Endo-1,4-beta Xilanasas/biosíntesis , Endo-1,4-beta Xilanasas/aislamiento & purificación , Endo-1,4-beta Xilanasas/metabolismo , Fermentación , Concentración de Iones de Hidrógeno , Residuos Industriales , Nitrógeno/metabolismo , Especificidad por Sustrato , TemperaturaRESUMEN
Two strains (15.1 and 15.8) of the thermophilic fungus Scytalidium thermophilum produced high levels of intracellular glucoamylases, with potential for industrial applications. The isoform I of the glucoamylase produced by 15.1 strain was sequentially submitted to DEAE-Cellulose and CM-Cellulose chromatography, and purified 141-fold, with 5.45 percent recovery. The glucoamylase of strain 15.8 was purified 71-fold by CM-Cellulose and Concanavalin A-Sepharose chromatography, with 7.38 percent recovery. Temperature and pH optima were in the range of 50-60ºC and 5.0-6.0, respectively, using starch and maltose as substrates. The glucoamylase of S. thermophilum 15.8 was more stable (t50 > 60 min) than that of S. thermophilum 15.1 (t50= 11-15 min), at 60ºC. The glucoamylase activities were enhanced by several ions (e.g. Mn2+ and Ca2+) and inhibited by β-mercaptoethanol. The glucoamylase from 15.1 strain showed a Km of 0.094 mg/ml and 0.029 mg/ml and Vmax of 202 U/mg prot and 109 U/mg prot, for starch and maltose, respectively. The hydrolysis products of starch and maltose, analyzed by TLC, demonstrated glucose as end product and confirming the character of the enzyme as glucoamylase. Differences were observed in relation to the products formed with maltose as substrate between the two strains studied. S. thermophilum 15.8 formed maltotriose in contrast with S. thermophilum 15.1.
Duas linhagens (15.1 e 15.8) do fungo termofílico Scytalidium thermophilum se mostraram produtoras de grandes quantidades de glucoamilases, com potencial aplicação industrial. A isoforma I de glucoamilase produzida pela linhagem 15.1 foi submetida seqüencialmente a cromatografia em colunas de DEAE-celulose e CM-celulose, sendo purificada 141 vezes com porcentagem de recuperação de 5,45 por cento. A glucoamilase da linhagem 15.8 foi purificada 71 vezes através do uso de colunas de cromatografia de CM-celulose e Concanavalina A-sepharose com porcentagem de recuperação de 7,38 por cento. Temperatura e pH ótimo foram de 50-60ºC e 5,0-6,0 respectivamente, utilizando-se amido e maltose como substratos. A glucoamilase de S. thermophilum 15.8 se mostrou mais estável (t50 > 60 min) que a de S. thermophilum 15.1 (t50 =11-15min) a 60ºC. As glucoamilases tiveram suas atividades enzimáticas aumentadas na presença de vários íons (ex: Mn2+, e Ca2+) e inibidas por β-mercaptoetanol. A glucoamilase da linhagem 15.1 apresentou um Km de 0,094 mg/ml e 0,029 mg/ml and Vmax de 202U/mg prot e 109U/mg prot, para amido e maltose respectivamente. A análise do produto da hidrólise de amido e maltose por TLC, demonstrou que o produto final era glucose, confirmando as características da enzima como glucoamilase. Diferenças entre as duas linhagens foram observadas com relação aos produtos formados tendo maltose como susbstrato, a linhagem 15.8 de S. thermophilum produziu maltotriose como produto final em contrate com a linhagem 15.1.
Asunto(s)
Pruebas Enzimáticas Clínicas , Enzimas/análisis , Hongos , /análisis , Técnicas In Vitro , Microbiología Industrial , Cromatografía , Medios de Cultivo , Hidrólisis , MétodosRESUMEN
Rhizopus microsporus var. rhizopodiformis produced high levels of alpha-amylase and glucoamylase under solid state fermentation, with several agricultural residues, such as wheat bran, cassava flour, sugar cane bagasse, rice straw, corncob and crushed corncob as carbon sources. These materials were humidified with distilled water, tap water, or saline solutions--Segato Rizzatti (SR), Khanna or Vogel. The best substrate for amylase production was wheat bran with SR saline solution (1:2 v/v). Amylolytic activity was still improved (14.3%) with a mixture of wheat bran, corncob, starch and SR saline solution (1:1:0.3:4.6 w/w/w/v). The optimized culture conditions were initial pH 5, at 45 degrees C during 6 days and relative humidity around 76%. The crude extract exhibited temperature and pH optima around 65 degrees C and 4-5, respectively. Amylase activity was fully stable for 1 h at temperatures up to 75 degrees C, and at pH values between 2.5 and 7.5.
Asunto(s)
Amilasas/química , Amilasas/metabolismo , Reactores Biológicos/microbiología , Técnicas de Cultivo de Célula/métodos , Fibras de la Dieta/microbiología , Triticum/microbiología , Zea mays/microbiología , Activación Enzimática , Estabilidad de Enzimas , Especificidad de la EspecieRESUMEN
The biochemical properties of the alkaline phosphatases (AlPs) produced by Rhizopus microsporus are described. High enzymic levels were produced within 1-2 d in agitated cultures with 1 % wheat bran. Intra- and extracellular AlPs were purified 5.0 and 9.3x, respectively, by DEAE-cellulose and ConA-sepharose chromatography. Molar mass of 118 and 120 kDa was estimated by gel filtration for both forms of phosphatases. SDS-PAGE indicated dimeric structures of 57 kDa for both forms. Mn(2+), Na(+) and Mg(2+) stimulated the activity, while Al(3+) and Zn(2+) activated only the extracellular form. Optimum temperature and pH for both phosphatases were 65 degrees C and pH 8.0, respectively. The enzymes were stable at 50 degrees C for at least 15 min. Hydrolysis of 4-nitrophenyl phosphate exhibited a K (m) 0.28 and 0.22 mmol/L, with upsilon (lim) 5.89 and 4.84 U/mg, for intra- and extracellular phosphatases, respectively. The properties of the reported AlPs may be suitable for biotechnological application.
Asunto(s)
Fosfatasa Alcalina/aislamiento & purificación , Proteínas Fúngicas/aislamiento & purificación , Rhizopus/enzimología , Fosfatasa Alcalina/metabolismo , Cationes/farmacología , Cromatografía en Agarosa , Cromatografía DEAE-Celulosa , Cromatografía en Gel , Electroforesis en Gel de Poliacrilamida , Proteínas Fúngicas/metabolismo , Calor , Concentración de Iones de Hidrógeno , Peso MolecularRESUMEN
Two strains (15.1 and 15.8) of the thermophilic fungus Scytalidium thermophilum produced high levels of intracellular glucoamylases, with potential for industrial applications. The isoform I of the glucoamylase produced by 15.1 strain was sequentially submitted to DEAE-Cellulose and CM-Cellulose chromatography, and purified 141-fold, with 5.45% recovery. The glucoamylase of strain 15.8 was purified 71-fold by CM- Cellulose and Concanavalin A-Sepharose chromatography, with 7.38% recovery. Temperature and pH optima were in the range of 50-60°C and 5.0-6.0, respectively, using starch and maltose as substrates. The glucoamylase of S. thermophilum 15.8 was more stable (t50 > 60 min) than that of S. thermophilum 15.1 (t50= 11-15 min), at 60°C. The glucoamylase activities were enhanced by several ions (e.g. Mn(2+) and Ca(2+)) and inhibited by ß- mercaptoethanol. The glucoamylase from 15.1 strain showed a Km of 0.094 mg/ml and 0.029 mg/ml and Vmax of 202 U/mg prot and 109 U/mg prot, for starch and maltose, respectively. The hydrolysis products of starch and maltose, analyzed by TLC, demonstrated glucose as end product and confirming the character of the enzyme as glucoamylase. Differences were observed in relation to the products formed with maltose as substrate between the two strains studied. S. thermophilum 15.8 formed maltotriose in contrast with S. thermophilum 15.1.
RESUMEN
Two strains (15.1 and 15.8) of the thermophilic fungus Scytalidium thermophilum produced high levels of intracellular glucoamylases, with potential for industrial applications. The isoform I of the glucoamylase produced by 15.1 strain was sequentially submitted to DEAE-Cellulose and CM-Cellulose chromatography, and purified 141-fold, with 5.45% recovery. The glucoamylase of strain 15.8 was purified 71-fold by CM-Cellulose and Concanavalin A-Sepharose chromatography, with 7.38% recovery. Temperature and pH optima were in the range of 50-60ºC and 5.0-6.0, respectively, using starch and maltose as substrates. The glucoamylase of S. thermophilum 15.8 was more stable (t50 > 60 min) than that of S. thermophilum 15.1 (t50= 11-15 min), at 60ºC. The glucoamylase activities were enhanced by several ions (e.g. Mn2+ and Ca2+) and inhibited by -mercaptoethanol. The glucoamylase from 15.1 strain showed a Km of 0.094 mg/ml and 0.029 mg/ml and Vmax of 202 U/mg prot and 109 U/mg prot, for starch and maltose, respectively. The hydrolysis products of starch and maltose, analyzed by TLC, demonstrated glucose as end product and confirming the character of the enzyme as glucoamylase. Differences were observed in relation to the products formed with maltose as substrate between the two strains studied. S. thermophilum 15.8 formed maltotriose in contrast with S. thermophilum 15.1.
Duas linhagens (15.1 e 15.8) do fungo termofílico Scytalidium thermophilum se mostraram produtoras de grandes quantidades de glucoamilases, com potencial aplicação industrial. A isoforma I de glucoamilase produzida pela linhagem 15.1 foi submetida seqüencialmente a cromatografia em colunas de DEAE-celulose e CM-celulose, sendo purificada 141 vezes com porcentagem de recuperação de 5,45%. A glucoamilase da linhagem 15.8 foi purificada 71 vezes através do uso de colunas de cromatografia de CM-celulose e Concanavalina A-sepharose com porcentagem de recuperação de 7,38%. Temperatura e pH ótimo foram de 50-60ºC e 5,0-6,0 respectivamente, utilizando-se amido e maltose como substratos. A glucoamilase de S. thermophilum 15.8 se mostrou mais estável (t50 > 60 min) que a de S. thermophilum 15.1 (t50 =11-15min) a 60ºC. As glucoamilases tiveram suas atividades enzimáticas aumentadas na presença de vários íons (ex: Mn2+, e Ca2+) e inibidas por -mercaptoetanol. A glucoamilase da linhagem 15.1 apresentou um Km de 0,094 mg/ml e 0,029 mg/ml and Vmax de 202U/mg prot e 109U/mg prot, para amido e maltose respectivamente. A análise do produto da hidrólise de amido e maltose por TLC, demonstrou que o produto final era glucose, confirmando as características da enzima como glucoamilase. Diferenças entre as duas linhagens foram observadas com relação aos produtos formados tendo maltose como susbstrato, a linhagem 15.8 de S. thermophilum produziu maltotriose como produto final em contrate com a linhagem 15.1.
RESUMEN
Biochemical properties of a termostable alkaline phosphatase obtained from the mycelium extract of A. caespitosus were described. The enzyme was purified 42-fold with 32% recovery by DEAE-cellulose and concanavalin A-Sepharose chromatography. The molar mass estimated by Sephacryl S-200 or by 7% SDS-PAGE was 138 kDa and 71 kDa, respectively, indicating a homodimer. Temperature and pH optima were 80 degrees C and pH 9.0. This enzyme was highly glycosylated (approximately 74% saccharide content). The activity was enhanced by Mg2+ (19-139%), NH4+ (64%), Na+ (51%) and Mn2+ (38%). 4-Nitrophenyl phosphate (4-NPP) was preferentially hydrolyzed, but glucose 1-phosphate (93%), UTP (67%) and O-phosphoamino acids also acted as substrates. V(lim) and K(m) were 3.78 nkat per mg protein and 270 micromol/L in the absence of Mg2+ and 7.35 nkat per mg protein and 410 micromol/L in the presence of Mg2+, using 4-NPP as substrate. The purified alkaline phosphatase removed the 5'-phosphate group of a linearized plasmid without showing DNAase activity, indicating its potential for recombinant DNA technology.
Asunto(s)
Fosfatasa Alcalina/aislamiento & purificación , Fosfatasa Alcalina/metabolismo , Aspergillus/enzimología , Micelio/enzimología , Fosfatasa Alcalina/química , Desoxirribonucleasas/metabolismo , Cinética , Especificidad por SustratoRESUMEN
Xylan is the principal type of hemicellulose. It is a linear polymer of beta-D-xylopyranosyl units linked by (1-4) glycosidic bonds. In nature, the polysaccharide backbone may be added to 4-O-methyl-alpha-D-glucuronopyranosyl units, acetyl groups, alpha-L-arabinofuranosyl, etc., in variable proportions. An enzymatic complex is responsible for the hydrolysis of xylan, but the main enzymes involved are endo-1,4-beta-xylanase and beta-xylosidase. These enzymes are produced by fungi, bacteria, yeast, marine algae, protozoans, snails, crustaceans, insect, seeds, etc., but the principal commercial source is filamentous fungi. Recently, there has been much industrial interest in xylan and its hydrolytic enzymatic complex, as a supplement in animal feed, for the manufacture of bread, food and drinks, textiles, bleaching of cellulose pulp, ethanol and xylitol production. This review describes some properties of xylan and its metabolism, as well as the biochemical properties of xylanases and their commercial applications.
Asunto(s)
Endo-1,4-beta Xilanasas/metabolismo , Hongos/enzimología , Xilanos/metabolismo , Xilosidasas/metabolismo , Endo-1,4-beta Xilanasas/química , Microbiología Industrial , Estructura Molecular , Xilosidasas/químicaRESUMEN
An alpha-amylase produced by Scytalidium thermophilum was purified using DEAE-cellulose and CM-cellulose ion exchange chromatography and Sepharose 6B gel filtration. The purified protein migrated as a single band in 6% PAGE and 7% SDS-PAGE. The estimated molecular mass was 36 kDa (SDS-PAGE) and 49 kDa (Sepharose 6B). Optima of pH and temperature were 6.0 and 60 degrees C, respectively. In the absence of substrate the purified alpha-amylase was stable for 1 h at 50 degrees C and had a half-life of 12 min at 60 degrees C, but was fully stable in the presence of starch. The enzyme was not activated by several metal ions tested, including Ca(2+) (up to 10 mM), but HgCl(2 )and CuCl(2) inhibited its activity. The alpha-amylase produced by S. thermophilum preferentially hydrolyzed starch, and to a lesser extent amylopectin, maltose, amylose and glycogen in that order. The products of starch hydrolysis (up to 6 h of reaction) analyzed by thin layer chromatography, showed oligosaccharides such as maltotrioses, maltotetraoses and maltopentaoses. Maltose and traces of glucose were formed only after 3 h of reaction. These results confirm the character of the enzyme studied to be an alpha-amylase (1,4-alpha-glucan glucanohydrolase).
Asunto(s)
Ascomicetos/enzimología , alfa-Amilasas/aislamiento & purificación , alfa-Amilasas/metabolismo , Metabolismo de los Hidratos de Carbono , Activadores de Enzimas/farmacología , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Hidrólisis , Metales/farmacología , Peso Molecular , Almidón/metabolismo , Temperatura , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/químicaRESUMEN
Among 30 species of filamentous fungi isolated from Brazilian soil, Aspergillus caespitosus produced and secreted the highest levels of alkaline phosphatase in culture medium supplemented with xylan. The extracellular alkaline phosphatase was purified by DEAE-cellulose and concanavalin A-sepharose chromatography. The enzyme was a glycoprotein containing up to 56% sugar with molar mass of 134.8 kDa, according to gel filtration in Sepharose CL-6B, and 57 kDa according to SDS-PAGE. Nondenaturing electrophoresis (6% PAGE) of the purified enzyme produced a single band, suggesting that the native enzyme was a homodimer. Optima of temperature and pH were 75 degrees C and 8.5, respectively. The enzyme was stable at 50 degrees C and its activity was enhanced by 95% in the presence of Mg2+ (1 mmol/L). 4-Nitrophenyl phosphate was the preferentially hydrolyzed substrate with K(m) and upsilon lim values of 74 mumol/L and 285 mumol/s, in the absence, and 90 mumol/L and 418 mumol/s, in the presence of Mg2+, respectively. The enzyme also hydrolyzed other phosphorylated amino acids (O-phosphothreonine, O-phosphotyrosine, O-phosphoserine).
Asunto(s)
Fosfatasa Alcalina/metabolismo , Aspergillus/enzimología , Fosfatasa Alcalina/química , Fosfatasa Alcalina/aislamiento & purificación , Carbohidratos , Inhibidores Enzimáticos/farmacología , Glicoproteínas/química , Glicoproteínas/aislamiento & purificación , Glicoproteínas/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Peso Molecular , Especificidad por Sustrato , TemperaturaRESUMEN
Glycogen synthases catalyze the transfer of a glucosyl moiety from a nucleotide phosphosugar to a nascent glycogen chain via an alpha1-->4 linkage. Although many genes coding for glycogen synthases have been described, the enzymes from rabbit and yeast are the best characterized. The fungus Neurospora crassa accumulates glycogen during exponential growth, and mobilizes it at the onset of stationary phase, or when placed at high temperature or starved for carbon. Through a PCR methodology, the gsn cDNA coding for the N. crassa glycogen synthase was isolated, and the amino acid sequence of the protein was deduced. The product of the cDNA seems to be the only glycogen synthase present in N. crassa. Characterization of the gsn cDNA revealed that it codes for a 706-amino acids protein, which is very similar to mammalian and yeast glycogen synthases. Gene expression increased during exponential growth, reaching its maximal level at the end of the exponential growth phase, which is consistent with the pattern of glycogen synthase activity and glycogen level. Expression of the gsn is highly regulated at the transcriptional level. Under culture conditions that induce heat shock, conidiation, and carbon starvation, expression of the gsn gene was decreased, and glycogen synthase activity and glycogen content behaved similarly.
Asunto(s)
Glucógeno Sintasa/genética , Glucógeno Sintasa/metabolismo , Neurospora crassa/enzimología , Neurospora crassa/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , ADN de Hongos/genética , Escherichia coli/genética , Regulación Enzimológica de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genes Fúngicos , Datos de Secuencia Molecular , Neurospora crassa/crecimiento & desarrollo , Homología de Secuencia de AminoácidoRESUMEN
An extracellular (conidial) and an intracellular (mycelial) alkaline phosphatase from the thermophilic fungus Scytalidium thermophilum were purified by DEAE-cellulose and Concanavalin A-Sepharose chromatography. These enzymes showed allosteric behavior either in the presence or absence of MgCl(2), BaCl(2), CuCl(2), and ZnCl(2). All of these ions increased the maximal velocity of both enzymes. The molecular masses of the conidial and mycelial enzymes, estimated by gel filtration, were 162 and 132 kDa, respectively. Both proteins migrated on SDS-PAGE as a single polypeptide of 63 and 58.5 kDa, respectively, suggesting that these enzymes were dimers of identical subunits. The best substrate for the conidial and mycelial phosphatases was p-nitrophenylphosphate, but beta-glycerophosphate and other phosphorylated compounds also served as substrates. The optimum pH for the conidial and mycelial alkaline phosphatases was 10.0 and 9.5 in the presence of AMPOL buffer, and their carbohydrate contents were about 54% and 63%, respectively. The optimum temperature was 70-75 degrees C for both activities. The enzymes were fully stable up to 1 h at 60 degrees C. These and other properties suggested that the alkaline phosphatases of S. thermophilum might be suitable for biotechnological applications.
Asunto(s)
Fosfatasa Alcalina , Hongos/enzimología , Calor , Fosfatasa Alcalina/química , Fosfatasa Alcalina/aislamiento & purificación , Fosfatasa Alcalina/metabolismo , Biotecnología/métodos , Medios de Cultivo , Estabilidad de Enzimas , Hongos/fisiología , Especificidad por SustratoRESUMEN
Glucoamylase produced by Scytalidium thermophilum was purified 80-fold by DEAE-cellulose, ultrafiltration and CM-cellulose chromatography. The enzyme is a glycoprotein containing 9.8% saccharide, pI of 8.3 and molar mass of 75 kDa (SDS-PAGE) or 60 kDa (Sepharose 6B). Optima of pH and temperature with starch or maltose as substrates were 5.5/70 degrees C and 5.5/65 degrees C, respectively. The enzyme was stable for 1 h at 55 degrees C and for about 8 d at 4 degrees C, either at pH 7.0 or pH 5.5. Starch, amylopectin, glycogen, amylose and maltose were the substrates preferentially hydrolyzed. The activity was activated by 1 mmol/L Mg2+ (27%), Zn2+ (21%), Ba2+ (8%) and Mn2+ (5%). Km and vlim values for starch and maltose were 0.21 g/L, 62 U/mg protein and 3.9 g/L, 9.0 U/mg protein, respectively. Glucoamylase activity was only slightly inhibited by glucose up to a 1 mol/L concentration.
Asunto(s)
Ascomicetos/enzimología , Glucano 1,4-alfa-Glucosidasa/aislamiento & purificación , Glucano 1,4-alfa-Glucosidasa/metabolismo , Glucosa/metabolismo , Ascomicetos/crecimiento & desarrollo , Medios de Cultivo , Estabilidad de Enzimas , Glucano 1,4-alfa-Glucosidasa/química , Cinética , Especificidad por SustratoRESUMEN
A beta-D-xylosidase was purified from cultures of a thermotolerant strain of Aspergillus phoenicis grown on xylan at 45 degrees C. The enzyme was purified to homogeneity by chromatography on DEAE-cellulose and Sephadex G-100. The purified enzyme was a monomer of molecular mass 132 kDa by gel filtration and SDS-PAGE. Treatment with endoglycosidase H resulted in a protein with a molecular mass of 104 kDa. The enzyme was a glycoprotein with 43.5% carbohydrate content and exhibited a pl of 3.7. Optima of temperature and pH were 75 degrees C and 4.0-4.5, respectively. The activity was stable at 60 degrees C and had a Km of 2.36 mM for p-nitrophenyl-beta-D-xylopiranoside. The enzyme did not exhibit xylanase, cellulase, galactosidase or arabinosidase activities. The purified enzyme was active against natural substrates, such as xylobiose and xylotriose.
Asunto(s)
Aspergillus/enzimología , Xilosidasas/aislamiento & purificación , Xilosidasas/metabolismo , Aspergillus/crecimiento & desarrollo , Medios de Cultivo , Estabilidad de Enzimas , Cinética , Especificidad por Sustrato , Temperatura , Xilosidasas/químicaRESUMEN
The influence of the cAMP-signalling pathway on the metabolism of trehalose in Neurospora crassa was investigated. The changes in intracellular trehalose concentration were measured in two mutants affected in components of the cAMP-signalling pathway: cr-1 (crisp-1), deficient in adenylyl cyclase activity, and mcb (microcyclic conidiation), deficient in the regulatory subunit of PKA. Rapid mobilisation of intracellular trehalose in the wild-type occurred, either at the onset of germination, or after a heat shock, and by carbon starvation. Mutant cr-1 failed to mobilise trehalose at germination, but behaved almost normally after a heat shock, or during carbon starvation. On the other hand, the levels of trehalose in mcb fell to values much lower than in the wild-type at germination, but accumulated trehalose normally during a heat shock. These results are consistent with the involvement of cAMP in the activation of the neutral trehalase at the onset of germination. However, the control of the enzyme under the other physiological conditions which also promote mobilisation of intracellular trehalose was apparently independent of cAMP-signalling.
Asunto(s)
Adenilil Ciclasas/genética , Proteínas Quinasas Dependientes de AMP Cíclico/genética , AMP Cíclico/metabolismo , Mutación , Neurospora crassa/metabolismo , Trehalosa/metabolismo , Adenilil Ciclasas/metabolismo , Carbono/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Respuesta al Choque Térmico , Neurospora crassa/genética , Neurospora crassa/fisiología , Transducción de SeñalRESUMEN
We are interested in studying the ubiquitin (UBI) gene expression during different stress and growth conditions in the filamentous fungus Aspergillus nidulans. Here, we report the cloning of a cDNA clone that corresponds to a gene, ubi1, that encodes a carboxyl extension protein from A. nidulans. This cDNA corresponds to a gene that encodes a protein that showed high homology to other polyubiquitin and CEP-80 genes at the N- and C-terminus, respectively. We characterize the mRNA expression of the CEP and polyubiquitin genes during several growth and stress conditions. Expression of the ubi1 and ubi4 genes was correlated with cell growth in most of the carbon sources used, except maltose. Both ubi1 and ubi4 genes were induced upon heat-shock, although the levels of expression were raised quicker for ubi4 than for ubi1. The ubi1 and ubi4 genes displayed a very complex expression pattern in presence of drugs with a different mechanism of action suggesting that the regulatory processes controlling UBI gene expression discriminate between different stresses and can affect individually each UBI gene. The ubi1 gene was highly expressed in presence of hydrogen peroxide while the ubi4 mRNA level was not affected; several metals in our experimental conditions were not able to induce either ubi1 nor ubi4 genes.
Asunto(s)
Aspergillus nidulans/genética , Precursores de Proteínas/genética , Ubiquitinas/genética , Secuencia de Aminoácidos , Aspergillus nidulans/química , Secuencia de Bases , Biopolímeros/química , Biopolímeros/genética , Clonación Molecular , ADN Complementario/química , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Calor , Datos de Secuencia Molecular , Poliubiquitina , Precursores de Proteínas/química , ARN Mensajero/metabolismo , Alineación de Secuencia , Ubiquitinas/químicaRESUMEN
In fungi, the hydrolysis of extracellular trehalose is carried out by acid trehalases. These secretory glycoproteins may be more abundant either in the vacuolar compartment, like in yeast, or at the cell surface, such as in many filamentous fungi. The relative efficiency of these two compartments for the utilization of extracellular trehalose was investigated using as a model the dimorphic fungus Mucor rouxii, which produces yeast-like cells under a CO(2) atmosphere, or hyphae in the presence of air. Under CO(2), cultures supplemented with glucose produced yeast-like cells devoid of acid trehalase activity. On the other hand, trehalose-supplemented cultures developed hyphae exhibiting cell wall-bound and intracellular acid trehalase activity. Glucose-grown yeast-like cells supplemented with trehalose after glucose exhaustion, induced intracellular activity of acid trehalase, but no activity was detected at the cell surface. Even endowed of significant intracellular activity of acid trehalase, these cells did not grow further. When exposed to air these yeast-like produced germ tubes exhibiting cell wall-bound acid trehalase activity. These results suggest that the utilization of extracellular trehalose as a source of carbon for growth requires the localization of acid trehalase activity at the cell surface. Our results also show that extracellular trehalose elicits a morphogenetic phenomenon, inducing the formation of hyphae which are the physiological support for acid trehalase activity.
Asunto(s)
Pared Celular/enzimología , Mucor/crecimiento & desarrollo , Trehalasa/metabolismo , Trehalosa/metabolismo , Anaerobiosis , Medios de Cultivo , Inducción Enzimática , Glucosa/metabolismo , Mucor/metabolismo , Mucor/ultraestructuraRESUMEN
Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs) into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively). Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism.
Asunto(s)
Blastocladiella/enzimología , Dictyostelium/enzimología , Neurospora crassa/enzimología , Fosfotreonina/metabolismo , Animales , Especificidad por SustratoRESUMEN
Preference for specific protein substrates together with differential sensitivity to activators and inhibitors has allowed classification of serine/threonine protein phosphatases (PPs) into four major types designated types 1, 2A, 2B and 2C (PP1, PP2A, PP2B and PP2C, respectively). Comparison of sequences within their catalytic domains has indicated that PP1, PP2A and PP2B are members of the same gene family named PPP. On the other hand, the type 2C enzyme does not share sequence homology with the PPP members and thus represents another gene family, known as PPM. In this report we briefly summarize some of our studies about the role of serine/threonine phosphatases in growth and differentiation of three different eukaryotic models: Blastocladiella emersonii, Neurospora crassa and Dictyostelium discoideum. Our observations suggest that PP2C is the major phosphatase responsible for dephosphorylation of amidotransferase, an enzyme that controls cell wall synthesis during Blastocladiella emersonii zoospore germination. We also report the existence of a novel acid- and thermo-stable protein purified from Neurospora crassa mycelia, which specifically inhibits the PP1 activity of this fungus and mammals. Finally, we comment on our recent results demonstrating that Dictyostelium discoideum expresses a gene that codes for PP1, although this activity has never been demonstrated biochemically in this organism