Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 6294, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34728636

RESUMEN

C-Glycosides, in which a sugar moiety is linked via a carbon-carbon (C-C) bond to a non-sugar moiety (aglycone), are found in our food and medicine. The C-C bond is cleaved by intestinal microbes and the resulting aglycones exert various bioactivities. Although the enzymes responsible for the reactions have been identified, their catalytic mechanisms and the generality of the reactions in nature remain to be explored. Here, we present the identification and structural basis for the activation of xenobiotic C-glycosides by heterocomplex C-deglycosylation enzymes from intestinal and soil bacteria. They are found to be metal-dependent enzymes exhibiting broad substrate specificity toward C-glycosides. X-ray crystallographic and cryo-electron microscopic analyses, as well as structure-based mutagenesis, reveal the structural details of these enzymes and the detailed catalytic mechanisms of their remarkable C-C bond cleavage reactions. Furthermore, bioinformatic and biochemical analyses suggest that the C-deglycosylation enzymes are widely distributed in the gut, soil, and marine bacteria.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/metabolismo , Tracto Gastrointestinal/metabolismo , Glicósidos/metabolismo , Secuencia de Aminoácidos , Bacterias/genética , Bacterias/aislamiento & purificación , Proteínas Bacterianas/química , Cristalografía por Rayos X , Tracto Gastrointestinal/microbiología , Glicósidos/química , Glicosilación , Filogenia , Elementos Estructurales de las Proteínas , Homología de Secuencia , Especificidad por Sustrato
2.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34583991

RESUMEN

C-glycosides have a unique structure, in which an anomeric carbon of a sugar is directly bonded to the carbon of an aglycone skeleton. One of the natural C-glycosides, carminic acid, is utilized by the food, cosmetic, and pharmaceutical industries, for a total of more than 200 tons/y worldwide. However, a metabolic pathway of carminic acid has never been identified. In this study, we isolated the previously unknown carminic acid-catabolizing microorganism and discovered a flavoenzyme "C-glycoside 3-oxidase" named CarA that catalyzes oxidation of the sugar moiety of carminic acid. A Basic Local Alignment Search Tool (BLAST) search demonstrated that CarA homologs were distributed in soil microorganisms but not intestinal ones. In addition to CarA, two CarA homologs were cloned and heterologously expressed, and their biochemical properties were determined. Furthermore, a crystal structure of one homolog was determined. Together with the biochemical analysis, the crystal structure and a mutagenesis analysis of CarA revealed the mechanisms underlying their substrate specificity and catalytic reaction. Our study suggests that CarA and its homologs play a crucial role in the metabolism of C-glycosides in nature.


Asunto(s)
Flavina-Adenina Dinucleótido/metabolismo , Glicósidos/metabolismo , Microbacterium/metabolismo , Glicósidos Cardíacos/metabolismo , Carmín/metabolismo , Catálisis , Redes y Vías Metabólicas/fisiología , Mutagénesis/fisiología , Oxidorreductasas/metabolismo , Especificidad por Sustrato
3.
PLoS One ; 8(1): e54011, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23342062

RESUMEN

The regulation of energy metabolism, such as calorie restriction (CR), is a major determinant of cellular longevity. Although augmented gluconeogenesis is known to occur in aged yeast cells, the role of enhanced gluconeogenesis in aged cells remains undefined. Here, we show that age-enhanced gluconeogenesis is suppressed by the deletion of the tdh2 gene, which encodes glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein that is involved in both glycolysis and gluconeogenesis in yeast cells. The deletion of TDH2 restores the chronological lifespan of cells with deletions of both the HST3 and HST4 genes, which encode yeast sirtuins, and represses the activation of gluconeogenesis. Furthermore, the tdh2 gene deletion can extend the replicative lifespan in a CR pathway-dependent manner. These findings demonstrate that the repression of enhanced gluconeogenesis effectively extends the cellular lifespan.


Asunto(s)
Gluconeogénesis , Saccharomyces cerevisiae/fisiología , Proliferación Celular , Senescencia Celular/genética , Senescencia Celular/fisiología , Metabolismo Energético/genética , Eliminación de Gen , Gluconeogénesis/genética , Glucosa/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/deficiencia , Gliceraldehído-3-Fosfato Deshidrogenasa (Fosforilante)/genética , Histona Desacetilasas/deficiencia , Histona Desacetilasas/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA