Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Agric Food Chem ; 69(25): 7178-7189, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34156855

RESUMEN

Avenanthramides (AVAs), unique phenolic compounds in oats, have attracted increasing interest due to their health benefits. Eight representative AVAs were studied using the density functional theory (DFT) method to elucidate their antioxidant activity and mechanism. Preference of different mechanisms was evaluated based on thermodynamic descriptors involved in double (2H+/2e-) free radical scavenging reactions. It was found that the hydrogen atom transfer (HAT) mechanism is more favorable in the gas and benzene phases, while sequential proton loss electron transfer (SPLET) is preferred in polar media. The results suggest the feasibility of the double HAT and double SPLET mechanisms for 2s and c-series AVAs. The sequential triple proton loss double electron transfer (StPLdET) mechanism represents the dominant pathway in aqueous solution at physiological pH. In addition, the sequential proton loss hydrogen atom transfer (SPLHAT) mechanism provides an alternative pathway to trap free radicals. Results also revealed the important role of the catechol, guaiacyl, and carboxyl moieties.


Asunto(s)
Antioxidantes , Catecoles , Radicales Libres , Termodinámica , ortoaminobenzoatos
2.
Phytochemistry ; 179: 112393, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32836068

RESUMEN

Dihydrochalcones (DHCs), an important subgroup of flavonoids, have recently received much attention due to their diverse biological activities. In contrast to their O-glycosides, understanding of the antioxidant property and mechanism of DHC C-glycosides remains limited. Herein, the free radical scavenging activity and mechanism of two representative C-glycosyl DHCs, aspalathin (ASP) and nothofagin (NOT) as well as their aglycones, 3-hydroxyphloretin (HPHL) and phloretin (PHL) were evaluated using the density functional theory (DFT) calculations. The results revealed the crucial role of sugar moiety on the conformation and the activity. The o-dihydroxyl in the B-ring and the 2',6'-dihydroxyacetophenone moiety were found significant in determining the activity. Our results showed that hydrogen atom transfer (HAT) is the dominant mechanism for radical-trapping in the gas and benzene phases, while the sequential proton loss electron transfer (SPLET) is more preferable in the polar environments. Also, the results revealed the feasibility of the double HAT and double SPLET as well as the SPLHAT mechanisms, which provide alternative pathways to trap radical for the studied DHCs. These results could deepen the understanding of the antiradical activity and mechanism of DHCs, which will facilitate the design of novel efficient antioxidants.


Asunto(s)
Antioxidantes , Glicósidos , Chalconas , Glicósidos/farmacología , Glicosilación
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 234: 118263, 2020 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-32203689

RESUMEN

Coumarin-chalcone hybrids have attracted much attention in recent years due to their important optical properties. Herein, the photophysical properties of a series of coumarinyl chalcones and the sensing mechanism for H2S of a related fluorescent probe CC-DNP were investigated using density functional theory (DFT) and time-dependent density functional theory (TDDFT) methods. The predicted spectral properties agree well with the experimental results, which allowed an assignment of the spectra. Our calculations successfully clarified the experimental observed fluorescence "off-on" effect and the fluorescent quenching mechanism of the probe. The results revealed that the first excited state (S1) of the probe CC-DNP is a dark state with obvious charge transfer from coumarin unit to 2,4-dinitrophenyl (DNP) moiety, which results in the fluorescence quenching via the nonradiative photoinduced electron transfer (PET) process. On the other hand, the excited state S1 in the thiolysis product CC-OH decayed directly to S0, and thus the fluorescence is recovered.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA