Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 16(19)2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37834484

RESUMEN

Aeolian sand is widely distributed in the Takramagan Desert, Xinjiang, China, which cannot be directly used as railway subgrade filling. It is beneficial for environmental protection to use fiber and cement-reinforced aeolian sand as railway subgrade filling. The present work is to explore the enhancement of tensile strength in cemented aeolian sand via the incorporation of polypropylene fibers under conditions of elevated temperature and drying curing. The purpose Is to delve into the examination of the temperature's impact on not only the mechanical attributes but also the microstructure of cemented aeolian sand reinforced with polypropylene fiber (CSRPF). For this, a comprehensive set of tests encompassing splitting tensile strength (STS) assessments and nuclear magnetic resonance (NMR) examinations is conducted. A total of 252 CSRPF specimens with varying fiber content (0, 6‱, 8‱, and 10‱) are tested at different curing temperatures (30 °C, 40 °C, 50 °C, 60 °C, 70 °C, and 80 °C). The outcomes of the NMR examinations indicate that elevating the curing temperature induces the expansion of pores within CSRPF, both in size and volume, consequently contributing to heightened internal structural deterioration. STS tests demonstrate that the STS of CSRPF decreases as the curing temperature increases. Meanwhile, the STS of CSRPF increases with fiber content, with optimal fiber content being 8‱. Regression models accurately predict the STS, with the curing temperature exhibiting the greatest influence, followed by the fiber content according to sensitivity analysis. The research results provide a valuable reference for the use of CSRPF as railway subgrade filling under high temperature and drying conditions.

2.
Materials (Basel) ; 17(1)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38204019

RESUMEN

To investigate the influencing factors and mechanisms of shear strength of red clay with a high liquid limit, which was selected at different milepost locations based on the Nanning Bobai Nabu Section Project of the Nanning Zhanjiang Expressway, the basic physical properties of red clay were determined using a liquid plastic limit test, compaction test, inductively coupled plasma optical emission spectrometer (ICP-OES), and X-ray fully automatic diffractometer (XRD). Red clay with a high liquid limit was selected. Furthermore, the direct shear test was used to study the effect of different water contents and compaction degrees on the shear strength. The experimental results demonstrate that under the same compaction degree, the shear stress of the soil sample increases significantly with an increase in normal stress, and the greater the water content, the smaller the shear stress of the soil sample. At 200 kPa, the shear strength of soil samples with 24% water content is 57%, 46%, and 35% of the shear strength of soil samples with 15% water content under different compaction degrees(K) of 86%, 90%, and 93%, respectively. Under the same moisture content, the shear stress of the soil sample shows an increasing trend with an increase in the degree of compaction, and the greater the compaction degrees, the greater the shear stress of the soil sample. The cohesion c and internal friction angle φ of soil samples increase with an increase in the compaction degree, but the increase in cohesion c is also affected by the water content. Under the condition of low water content, the cohesion c of soil samples can be increased by 1.06 times when the water content is 15% and by 0.47 times when the water content is 18%. Under the condition of high water content, the cohesion c of soil samples with 21% water content only increases by 0.3 times, and that with 24% water content only increases by 0.35 times.

3.
Water Sci Technol ; 68(12): 2545-51, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24355839

RESUMEN

Simulating the dynamics of soil water content and modeling soil water evaporation are critical for many environmental and agricultural strategies. The present study aims to develop an analytical solution to simulate soil water redistribution during the evaporation process. This analytical solution was derived utilizing an exponential function to describe the relation of hydraulic conductivity and water content on pressure head. The solution was obtained based on the initial condition of saturation and an exponential function to model the change of surface water content. Also, the evaporation experiments were conducted under a climate control apparatus to validate the theoretical development. Comparisons between the proposed analytical solution and experimental result are presented from the aspects of soil water redistribution, evaporative rate and cumulative evaporation. Their good agreement indicates that this analytical solution provides a reliable way to investigate the interaction of evaporation and soil water profile.


Asunto(s)
Clima , Hidrodinámica , Modelos Teóricos , Suelo , Movimientos del Agua , Simulación por Computador , Volatilización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA