Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Plant Res ; 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39147963

RESUMEN

Hibiscus is a charismatic genus of the Malvaceae family that is noted for its diversity, lacking identifiable characteristics for distinguishing its various species. Therefore, there is an urgent need to develop authentication methods for genus delimitation and species delineation. The present study aims to discern the taxonomic relationships between the well-known, globally familiar, and economically important five Hibiscus species, namely: H. × rosa-sinensis, H. sabdariffa, H. schizopetalus, H. syriacus and H. tiliaceus based on traditional morphological and anatomical characteristics compared to the contemporary chemotaxonomy. In this context, the leaf-based methanolic extracts of the studied species were analyzed by Gas Chromatography-Mass Spectrometer (GC-MS) to estimate their secondary metabolites similarity. In addition, selected qualitative morphological and anatomical traits including leaf venation patterns, epidermal micromorphology, stomata types and trichomes diversity, petiole serial sectioning (outline, adaxial groove features, vasculature traces arrangement), and midrib characteristics of the studied species were investigated. The results of both chemotaxonomy and traditional taxonomy exhibited a remarkable agreement in the delineation of the five studied species. Specifically, the chemotaxonomy-based dendrogram separates the studied species into two main clusters with the H. sabdariffa as an outlier species in a single cluster and the remaining four species as another cluster with variant distances in its similarity indices. Similarly, the traditional morphological and anatomical characteristics revealed distinct traits for H. sabdariffa compared to the remaining four species. The findings of this study highlight the significance of integrating the structural features with phytochemicals profiling as a potential approach that could be harnessed for the delineation of the taxonomically challenging Hibiscus genus.

2.
BMC Plant Biol ; 23(1): 193, 2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37041463

RESUMEN

BACKGROUND: Wheat is a major cereal that can narrow the gap between the increasing human population and food production. In this connection, assessing genetic diversity and conserving wheat genetic resources for future exploitation is very important for breeding new cultivars that may withstand the expected climate change. The current study evaluates the genetic diversity in selected wheat cultivars using ISSR and SCoT markers, the rbcL and matK chloroplast DNA barcoding, and grain surface sculpture characteristics. We anticipate that these objectives may prioritize using the selected cultivars to improve wheat production. The selected collection of cultivars may lead to the identification of cultivars adapted to a broad spectrum of climatic environments. RESULTS: Multivariate clustering analyses of the ISSR and SCoT DNA fingerprinting polymorphism grouped three Egyptian cultivars with cultivar El-Nielain from Sudan, cultivar Aguilal from Morocco, and cultivar Attila from Mexico. In the other group, cultivar Cook from Australia and cultivar Chinese-166 were differentiated from four other cultivars: cultivar Cham-10 from Syria, cultivar Seri-82 from Mexico, cultivar Inqalab-91 from Pakistan, and cultivar Sonalika from India. In the PCA analysis, the Egyptian cultivars were distinct from the other studied cultivars. The rbcL and matK sequence variation analysis indicated similarities between Egyptian cultivars and cultivar Cham-10 from Syria and cultivar Inqalab-91 from Pakistan, whereas cultivar Attila from Mexico was distinguished from all other cultivars. Combining the data of ISSR and SCoT with the rbcL and matK results retained the close resemblance among the two Egyptian cultivars EGY1: Gemmeiza-9 and EGY3: Sakha-93, and the Moroccan cultivar Aguilal, and the Sudanese cultivar El-Nielain and between Seri-82, Inqalab-91, and Sonalika cultivars. The analysis of all data distinguished cultivar Cham-10 from Syria from all other cultivars, and the analysis of grain traits indicated a close resemblance between cv. Cham-10 from and the two Egyptian cultivars Gemmeiza-9 and Sakha-93. CONCLUSIONS: The analysis of rbcL and matK chloroplast DNA barcoding agrees with the ISSR and the SCoT markers in supporting the close resemblance between the Egyptian cultivars, particularly Gemmeiza-9 and Sakha-93. The ISSR and SCoT data analyses significantly expressed high differentiation levels among the examined cultivars. Cultivars with closer resemblance may be recommended for breeding new wheat cultivars adapted to various climatic environments.


Asunto(s)
ADN de Cloroplastos , Triticum , Humanos , Grano Comestible , Fitomejoramiento , Polimorfismo Genético
3.
BMC Plant Biol ; 22(1): 205, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35443606

RESUMEN

The genus Cassia and Senna have been classified under subfamily Caesalpinioideae of family Fabaceae (Leguminosae) of order Fabales. There is a scarce taxonomical studies of the genus Cassia and Senna inhabiting Egyptian environments, thus, the main objective of the current was to revise and authenticate the phylogenetic relationship between studied taxa of the species of the genera Cassia and Senna in Egypt using the recent tools of ITS barcoding, RAPD analysis and metabolic profiling, in comparing to the traditional taxonomical features. From the cluster analysis of the traditional 27 morphological characters, the studied taxa were categorized into two major clades with an average taxonomic distance of 4.3. The clade I include Cassia fistula, C. renigera, C. javanica L subsp. nodosa and C. roughiia that belongs to series Obolospermae, and C. grandis that belongs to series Grandes. The clade (II) includes Senna surattensis and S. alata at taxonomic level 3.6. The taxonomical description of the studied taxa was confirmed from the molecular analysis of ITS sequences and RAPD analysis. The ITS sequences of the tested plants species C. fistula L, C. grandis MD4, C. javanica subsp. nodosa MD7, C. roxburghii MD5, C. renigera MD5 were deposited at genbank with accession numbers MW367973, MZ960447, MW386305, MW326753 and MW32685, respectively. While, the ITS sequences of the S. surrattensis and S. alata were deposited into genbank accession # MD14 MW367670 and MD20 MW412635, respectively. Thus, from the molecular analysis, two clades were clearly separated into Clade I of Cassia and Clade II of Senna. The cluster I represented by C. fistula, C. renigera, C. roxburghii, and C. javanica sub nodosa, and the cluster II represented by S. alata and S. surattensis. From the PCA of RAPD, a clearly discrimination between the two Taxa was observed revealing the characteristic grouping of Cassia and Senna. The species Senna alata and Senna surattensis were grouped together, but the species of C. renigera, C. javanica, C. roxburghii and C. grandis was grouped on a distinct group. The separation of Cassia and Senna species into two clusters verify the segregation of the genus Cassia L. senso lato into two distinct genera namely Senna P. and Cassia L. The morphological, molecular traits of the studied plants were authenticated from the metabolic profiling by GC-MS analysis. Among the 23 identified metabolites, four compounds namely hexadecanoic acid, methyl ester, 9-Octadecenoic acid (Z)-ethyl ester and Vitamin E were detected with fluctuated concentrations, among C. fistula, C. grandis, C. javanica subsp. nodosa and C. roxburghii. Conclusively, the traditional morphological features, molecular barcoding using ITS sequences, RAPD analysis and metabolic traits by GC-MS analysis, authenticates the taxonomical diversity of the genus Cassia and Senna.


Asunto(s)
Cassia , Fabaceae , Senna , Cassia/genética , Egipto , Ésteres , Filogenia , Técnica del ADN Polimorfo Amplificado Aleatorio , Senna/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA