RESUMEN
ß-Glucosidases are enzymes present in all living organisms, playing a pivotal role in diverse biological processes. These enzymes cleave ß-glycosidic bonds between carbohydrates, or between a carbohydrate and a non-carbohydrate moiety, which may result in the liberation of volatile aglycones. Released compounds execute diverse physiological roles, while the industry takes advantage of exogenously added ß-glucosidases for aroma enrichment during food and beverage production. ß-Glucosidase enzymatic activity has been reported in human saliva and given the fact that these enzymes are involved in aroma release, we investigated here the correlation between ß-glucosidase activity in human saliva and the occurrence of halitosis. Measurement of salivary enzyme activity of 48 volunteers was performed using p-nitrophenyl-ß-d-glucopyranoside as substrate. Each volunteer was clinically evaluated by a dental surgeon and clinical and laboratorial data were statistically analyzed. Gas-chromatography of saliva headspace allowed the analysis of the direct role of exogenous ß-glucosidase on aromatic /volatile profile of saliva samples. The data demonstrated a positive correlation between halitosis and enzymatic activity, suggesting that the enzyme exerts a direct role in the occurrence of bad breath. Gas-chromatography analysis demonstrated that exogenously added enzyme led to the alteration of volatile organic content, confirming a direct contribution of ß-glucosidase activity on saliva volatile compounds release. Although halitosis is a multifactorial condition, the complete understanding of all governing factors may allow the development of more effective treatment strategies. Such studies may pave the way to the use of ß-glucosidase inhibitors for halitosis clinical management.
RESUMEN
Dental biofilm - in which a diverse set of microorganisms are embedded in a complex polysaccharide matrix that adheres to oral components - is one of the most complex microbial communities in the human body. As biofilm formation is related to oral infections, such as caries and periodontal diseases, strategies for biofilm control are crucial for maintaining oral health. Xylitol, a synthetic sugar used as a sucrose substitute, has been shown to reduce biofilm formation. However, its precise mechanism of action on biofilm reduction has so far not been elucidated. Previous studies demonstrate that bacterial ß-glucosidase action is crucial for biofilm formation. Here, we investigated the correlation between salivary ß-glucosidase activity and dental plaque occurrence. We found a positive correlation between enzymatic activity and the presence of dental biofilm. We observed that xylitol inhibits ß-glucosidase in human saliva. Kinetic studies also confirmed that xylitol acts as a mixed type inhibitor of salivary ß-glucosidase. Based on our data, we suggest that xylitol impairs oral biofilm formation by the inhibition of bacterial ß-glucosidase, which is essential for biofilm formation in the oral cavity.