RESUMEN
Biotite, an iron-rich mineral belonging to the trioctahedral mica group, is a naturally abundant layered material (LM) exhibiting attractive electronic properties for application in nanodevices. Biotite stands out as a non-degradable LM under ambient conditions, featuring high-quality basal cleavage-a significant advantage for van der Waals heterostructure (vdWH) applications. In this work, we present the micro-mechanical exfoliation of biotite down to monolayers (1Ls), yielding ultrathin flakes with large areas and atomically flat surfaces. To identify and characterize the mineral, we conducted a multi-elemental analysis of biotite using energy-dispersive spectroscopy mapping. Additionally, synchrotron x-ray fluorescence and infrared nano-spectroscopy were employed to probe its iron content and vibrational signature in few-layer form, respectively, with sensitivity to the layer number. We have also observed good morphological and structural stability in time (up to 12 months) and no important changes in their physical properties after thermal annealing processes in ultrathin biotite flakes. Conductive atomic force microscopy evaluated its electrical capacity, revealing an electrical breakdown strength of approximately 1 V nm-1. Finally, we explore the use of biotite as a substrate and encapsulating LM in vdWH applications. We have performed optical and magneto-optical measurements at low temperatures. We find that ultrathin biotite flakes work as a good substrate for 1L-MoSe2, comparable to hexagonal boron nitride flakes, but it induces a small change of the 1L-MoSe2g-factor values, most likely due to natural impurities on its crystal structure. Furthermore, our results show that biotite flakes are useful systems to protect sensitive LMs such as black phosphorus from degradation for up to 60 days in ambient air. Our study introduces biotite as a promising, cost-effective LM for the advancement of future ultrathin nanotechnologies.
RESUMEN
Persistent luminescent materials are present in several recent studies on new applications and novel properties. In this work, we demonstrate, for the first time, the production of translucent flexible persistent composites based on Sr2MgSi2O7:Eu2+,Dy3+ (SMSO) into cellulose ether matrix film. The composite was successfully prepared through a new optimized route of co-precipitation and microwave-assisted annealing followed by (3-aminopropyl)triethoxysilane (APTES) coating and dispersion in hydroxypropyl methylcellulose (HPMC). The SMSO@APTES/HPMC films show persistent luminescence emission at 475 nm (blue) and high transmittance in the visible range. To understand the fine distribution of the nanoparticles in the matrix, we have investigated their structure and dispersion by using Synchrotron Radiation X-ray fluorescence mapping and Scanning Transmission X-ray Microscopy. This innovative composite could bring new perspectives for the class of persistent luminescence materials, enhancing technologies in progress throwing light on new applications never perceived.
Asunto(s)
Luminiscencia , Nanopartículas , Celulosa/química , Éter , Nanopartículas/químicaRESUMEN
Microbial communities have been explored in various terrestrial subsurface ecosystems, showing metabolic potentials that could generate noteworthy morphological and molecular biosignatures. Recent advancements in bioinformatic tools have allowed for descriptions of novel and yet-to-be cultivated microbial lineages in different ecosystems due to the genome reconstruction approach from metagenomic data. Using shotgun metagenomic data, we obtained metagenome-assembled genomes related to cultivated and yet-to-be cultivated prokaryotic lineages from a silica and iron-rich cave (Monte Cristo) in Minas Gerais State, Brazil. The Monte Cristo Cave has been shown to possess a high diversity of genes involved with different biogeochemical cycles, including reductive and oxidative pathways related to carbon, sulfur, nitrogen, and iron. Three genomes were selected for pangenomic analysis, assigned as Truepera sp., Ca. Methylomirabilis sp., and Ca. Koribacter sp. based on their lifestyles (radiation resistance, anaerobic methane oxidation, and potential iron oxidation). These bacteria exhibit genes involved with multiple DNA repair strategies, starvation, and stress response. Because these groups have few reference genomes deposited in databases, our study adds important genomic information about these lineages. The combination of techniques applied in this study allowed us to unveil the potential relationships between microbial genomes and their ecological processes with the cave mineralogy and highlight the lineages involved with anaerobic methane oxidation, iron oxidation, and radiation resistance as functional models for the search for extant life-forms outside our planet in silica- and iron-rich environments and potentially on Mars.
Asunto(s)
Metagenoma , Microbiota , Brasil , Cuevas/microbiología , Metagenómica , Microbiota/genética , FilogeniaRESUMEN
Shedding synchrotron light on microfluidic systems, exploring several contrasts in situ/operando at the nanoscale, like X-ray fluorescence, diffraction, luminescence, and absorption, has the potential to reveal new properties and functionalities of materials across diverse areas, such as green energy, photonics, and nanomedicine. In this work, we present the micro-fabrication and characterization of a multifunctional polyester/glass sealed microfluidic device well-suited to combine with analytical X-ray techniques. The device consists of smooth microchannels patterned on glass, where three gold electrodes are deposited into the channels to serve in situ electrochemistry analysis or standard electrical measurements. It has been efficiently sealed through an ultraviolet-sensitive sticker-like layer based on a polyester film, and The burst pressure determined by pumping water through the microchannel(up to 0.22 MPa). Overall, the device has demonstrated exquisite chemical resistance to organic solvents, and its efficiency in the presence of biological samples (proteins) is remarkable. The device potentialities, and its high transparency to X-rays, have been demonstrated by taking advantage of the X-ray nanoprobe Carnaúba/Sirius/LNLS, by obtaining 2D X-ray nanofluorescence maps on the microchannel filled with water and after an electrochemical nucleation reaction. To wrap up, the microfluidic device characterized here has the potential to be employed in standard laboratory experiments as well as in in situ and in vivo analytical experiments using a wide electromagnetic window, from infrared to X-rays, which could serve experiments in many branches of science.
RESUMEN
Zinc Oxide nanoparticles have been synthesized by two simple routes using Aloe vera (green synthesis, route I) or Cassava starch (gelatinization, route II). The XRD patterns and Raman spectra show that both synthesis routes lead to single-phase ZnO. XPS results indicate the presence of zinc atoms with oxidation state Zn2+. SEM images of the ZnO nanoparticles synthesized using Cassava starch show the presence of pseudo-spherical nanoparticles and nanosheets, while just pseudo-spherical nanoparticles were observed when Aloe vera was used. The UV-Vis spectra showed a slight difference in the absorption edge of the ZnO particles obtained using Aloe vera (3.18 eV) and Cassava starch (3.24 eV). The ZnO nanoparticles were tested as adsorbents for the removal of copper in wastewater, it is shown that at low Cu2+ ion concentration (~40 mg/L) the nanoparticles synthesized by both routes have the same removal efficiency, however, increasing the absorbate concentration (> 80 mg/L) the ZnO nanoparticles synthesized using Aloe vera have a higher removal efficiency. The synthesized ZnO nanoparticles can be used as effective and environmental-friendly metal trace absorbers in wastewater.
RESUMEN
Luminescent nanoparticles of Y2 O3 doped with europium (Eu) and/or titanium (Ti) were synthesized using modified sol-gel routes. The crystalline cubic phase was confirmed using X-ray powder diffraction (XRD). Particle morphology and size were evaluated using scanning and transmission electron microscopy. High-resolution transmission electron microscopy showed that the synthesis method affected the average particle size and the Fourier transform of the images showed the lattice plane distances, indicating that the samples presented high crystallinity degree in accordance with the XRD pattern. The Ti valence was investigated using X-ray absorption near edge spectroscopy and the tetravalent form was the dominant oxidizing state in the samples, mainly in Eu and Ti co-doped Y2 O3 . Optical behaviour was investigated through X-ray excited optical luminescence and photoluminescence under ultraviolet-visible (UV-vis) and vacuum ultraviolet (VUV) excitation. Results indicated that Eu3+ is the emitting centre in samples doped with only Eu and with both Eu and Ti with the 5 D0 â7 F2 transition as the most intense, indicating Eu3+ in a noncentrosymmetric site. Finally, in the Eu,Ti-doped Y2 O3 system, Ti3+ (or TiIV ) excitation was observed but no Ti emission was present, indicating a very efficient energy transfer process from Ti to Eu3+ . These results can aid the development of efficient nanomaterials, activated using UV, VUV, or X-rays.
Asunto(s)
Europio/química , Sustancias Luminiscentes/química , Nanopartículas/química , Titanio/química , Itrio/química , Mediciones Luminiscentes , Estructura Molecular , Fenómenos Ópticos , Tamaño de la Partícula , Difracción de Polvo , Propiedades de SuperficieRESUMEN
The biogenicity problem of geological materials is one of the most challenging ones in the field of paleo and astrobiology. As one goes deeper in time, the traces of life become feeble and ambiguous, blending with the surrounding geology. Well-preserved metasedimentary rocks from the Archaean are relatively rare, and in very few cases contain structures resembling biological traces or fossils. These putative biosignatures have been studied for decades and many biogenicity criteria have been developed, but there is still no consensus for many of the proposed structures. Synchrotron-based techniques, especially on new generation sources, have the potential for contributing to this field of research, providing high sensitivity and resolution that can be advantageous for different scientific problems. Exploring the X-ray and matter interactions on a range of geological materials can provide insights on morphology, elemental composition, oxidation states, crystalline structure, magnetic properties, and others, which can measurably contribute to the investigation of biogenicity of putative biosignatures. Here, we provide an overview of selected synchrotron-based techniques that have the potential to be applied in different types of questions on the study of biosignatures preserved in the geological record. The development of 3rd and recently 4th generation synchrotron sources will favor a deeper understanding of the earliest records of life on Earth and also bring up potential analytical approaches to be applied for the search of biosignatures in meteorites and samples returned from Mars in the near future.
RESUMEN
[This corrects the article DOI: 10.3389/fmicb.2019.02358.].