RESUMEN
P21 is a protein secreted by all forms of Trypanosoma cruzi (T. cruzi) with recognized biological activities determined in studies using the recombinant form of the protein. In our recent study, we found that the ablation of P21 gene decreased Y strain axenic epimastigotes multiplication and increased intracellular replication of amastigotes in HeLa cells infected with metacyclic trypomastigotes. In the present study, we investigated the effect of P21 in vitro using C2C12 cell lines infected with tissue culture-derived trypomastigotes (TCT) of wild-type and P21 knockout (TcP21-/-) Y strain, and in vivo using an experimental model of T. cruzi infection in BALB/c mice. Our in-vitro results showed a significant decrease in the host cell invasion rate by TcP21-/- parasites as measured by Giemsa staining and cell count in bright light microscope. Quantitative polymerase chain reaction (qPCR) analysis showed that TcP21-/- parasites multiplied intracellularly to a higher extent than the scrambled parasites at 72h post-infection. In addition, we observed a higher egress of TcP21-/- trypomastigotes from C2C12 cells at 144h and 168h post-infection. Mice infected with Y strain TcP21-/- trypomastigotes displayed higher systemic parasitemia, heart tissue parasite burden, and several histopathological alterations in heart tissues compared to control animals infected with scrambled parasites. Therewith, we propose that P21 is important in the host-pathogen interaction during invasion, cell multiplication, and egress, and may be part of the mechanism that controls parasitism and promotes chronic infection without patent systemic parasitemia.
Asunto(s)
Enfermedad de Chagas , Proteínas Protozoarias , Trypanosoma cruzi , Animales , Humanos , Ratones , Línea Celular , Enfermedad de Chagas/parasitología , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Interacciones Huésped-Parásitos , Ratones Endogámicos BALB C , Parasitemia , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/patogenicidad , Trypanosoma cruzi/fisiología , Trypanosoma cruzi/metabolismo , VirulenciaRESUMEN
BACKGROUND: Leishmaniasis, a neglected disease caused by the parasite Leishmania, is treated with drugs associated with high toxicity and limited efficacy, in addition to constant reports of the emergence of resistant parasites. In this context, snake serums emerge as good candidates since they are natural sources with the potential to yield novel drugs. OBJECTIVES: We aimed to show the antileishmanial effects of γCdcPLI, a phospholipase A2 inhibitor from Crotalus durissus collilineatus snake serum, against Leishmania (Leishmania) amazonensis. METHODS: Promastigotes forms were exposed to γCdcPLI, and we assessed the parasite viability and cell cycle, as well as invasion and proliferation assays. FINDINGS: Despite the low cytotoxicity effect on macrophages, our data indicate that γCdcPLI has a direct effect on parasites promoting an arrest in the G1 phase and reduction in the G2/M phase at the highest dose tested. Moreover, this PLA2 inhibitor reduced the parasite infectivity when promastigotes were pre-treated. Also, we demonstrated that the γCdcPLI treatment modulated the host cell environment impairing early and late steps of the parasitism. MAIN CONCLUSIONS: γCdcPLI is an interesting tool for the discovery of new essential targets on the parasite, as well as an alternative compound to improve the effectiveness of the leishmaniasis treatment.
Asunto(s)
Antiprotozoarios , Leishmania , Leishmaniasis , Animales , Humanos , Ratones , Crotalus , Leishmaniasis/tratamiento farmacológico , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Ratones Endogámicos BALB CRESUMEN
Many pathogenic organisms need to reach either an intracellular compartment or the cytoplasm of a target cell for their survival, replication or immune system evasion. Intracellular pathogens frequently penetrate into the cell through the endocytic and phagocytic pathways (clathrin-mediated endocytosis, phagocytosis and macropinocytosis) that culminates in fusion with lysosomes. However, several mechanisms are triggered by pathogenic microorganisms - protozoan, bacteria, virus and fungus - to avoid destruction by lysosome fusion, such as rupture of the phagosome and thereby release into the cytoplasm, avoidance of autophagy, delaying in both phagolysosome biogenesis and phagosomal maturation and survival/replication inside the phagolysosome. Here we reviewed the main data dealing with phagosome maturation and evasion from lysosomal killing by different bacteria, protozoa, fungi and virus.
Asunto(s)
Lisosomas , Fagocitosis , Lisosomas/microbiología , Fagosomas/metabolismo , Fagosomas/microbiología , Endocitosis , Evasión InmuneRESUMEN
BACKGROUND Leishmaniasis, a neglected disease caused by the parasite Leishmania, is treated with drugs associated with high toxicity and limited efficacy, in addition to constant reports of the emergence of resistant parasites. In this context, snake serums emerge as good candidates since they are natural sources with the potential to yield novel drugs. OBJECTIVES We aimed to show the antileishmanial effects of γCdcPLI, a phospholipase A2 inhibitor from Crotalus durissus collilineatus snake serum, against Leishmania (Leishmania) amazonensis. METHODS Promastigotes forms were exposed to γCdcPLI, and we assessed the parasite viability and cell cycle, as well as invasion and proliferation assays. FINDINGS Despite the low cytotoxicity effect on macrophages, our data indicate that γCdcPLI has a direct effect on parasites promoting an arrest in the G1 phase and reduction in the G2/M phase at the highest dose tested. Moreover, this PLA2 inhibitor reduced the parasite infectivity when promastigotes were pre-treated. Also, we demonstrated that the γCdcPLI treatment modulated the host cell environment impairing early and late steps of the parasitism. MAIN CONCLUSIONS γCdcPLI is an interesting tool for the discovery of new essential targets on the parasite, as well as an alternative compound to improve the effectiveness of the leishmaniasis treatment.
RESUMEN
Pentachloropseudilin (PClP) is a reversible and allosteric inhibitor of typeâ 1 myosin. Here, we addressed the impact of PClP treatment of Trypanosoma cruzi and mammalian host cell on the parasite migration, cell adhesion and invasion. We observed that PClP was not toxic to either T.â cruzi or host cell. Moreover, treatment of T.â cruzi with PClP inhabited parasite motility, host cell adhesion and invasion. Treatment of host cell with PClP also impaired parasite invasion probably by decreasing lysosome migration to the entry site of the parasite. Therefore, PClP treatment impaired fundamental processes necessary for a successful T.â cruzi infection.
Asunto(s)
Hidrocarburos Clorados , Trypanosoma cruzi , Animales , Lisosomas , Mamíferos , Miosinas/metabolismo , Pirroles/metabolismoRESUMEN
P21 is an immunomodulatory protein expressed throughout the life cycle of Trypanosoma cruzi, the etiologic agent of Chagas disease. In vitro and in vivo studies have shown that P21 plays an important role in the invasion of mammalian host cells and establishment of infection in a murine model. P21 functions as a signal transducer, triggering intracellular cascades in host cells and resulting in the remodeling of the actin cytoskeleton and parasite internalization. Furthermore, in vivo studies have shown that P21 inhibits angiogenesis, induces inflammation and fibrosis, and regulates intracellular amastigote replication. In this study, we used the CRISPR/Cas9 system for P21 gene knockout and investigated whether the ablation of P21 results in changes in the phenotypes associated with this protein. Ablation of P21 gene resulted in a lower growth rate of epimastigotes and delayed cell cycle progression, accompanied by accumulation of parasites in G1 phase. However, P21 knockout epimastigotes were viable and able to differentiate into metacyclic trypomastigotes, which are infective to mammalian cells. In comparison with wild-type parasites, P21 knockout cells showed a reduced cell invasion rate, demonstrating the role of this protein in host cell invasion. However, there was a higher number of intracellular amastigotes per cell, suggesting that P21 is a negative regulator of amastigote proliferation in mammalian cells. Here, for the first time, we demonstrated the direct correlation between P21 and the replication of intracellular amastigotes, which underlies the chronicity of T. cruzi infection.
Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Citoesqueleto de Actina/fisiología , Animales , Enfermedad de Chagas/parasitología , Técnicas de Inactivación de Genes , Estadios del Ciclo de Vida/fisiología , Mamíferos/genética , Ratones , Trypanosoma cruzi/fisiologíaRESUMEN
Trypanosoma cruzi P21 is a protein secreted by the parasite that plays biological roles directly involved in the progression of Chagas disease. The recombinant protein (rP21) demonstrates biological properties, such as binding to CXCR4 receptors in macrophages, chemotactic activity of immune cells, and inhibiting angiogenesis. This study aimed to verify the effects of rP21 interaction with CXCR4 from non-tumoral cells (MCF-10A) and triple-negative breast cancer cells (MDA-MB-231). Our data showed that the MDA-MB-231 cells expressed higher levels of CXCR4 than did the non-tumor cell lines. Besides, cytotoxicity assays using different concentrations of rP21 showed that the recombinant protein was non-toxic and was able to bind to the cell membranes of both cell lineages. In addition, rP21 reduced the migration and invasion of MDA-MB-231 cells by the downregulation of MMP-9 gene expression. In addition, treatment with rP21 blocked the cell cycle, arresting it in the G1 phase, mainly in MDA-MB-231 cells. Finally, rP21 prevents the chemotaxis and proliferation induced by CXCL12. Our data showed that rP21 binds to the CXCR4 receptors in both cells, downregulates CXCR4 gene expression, and decreases the receptors in the cytoplasm of MDA-MB-231 cells, suggesting CXCR4 internalization. This internalization may explain the desensitization of the receptors in these cells. Thus, rP21 prevents migration, invasion, and progression in MDA-MB-231 cells.
RESUMEN
Trypanosoma cruzi P21 protein (P21) is a putative secreted and immunomodulatory molecule with potent bioactive properties such as induction of phagocytosis and actin cytoskeleton polymerization. Despite the bioactive properties described so far, the action of P21 on parasite replication in muscle cell lineage or T. cruzi parasitism during acute experimental infection is unclear. We observed that recombinant P21 (rP21) decreased the multiplication of T. cruzi in C2C12 myoblasts, phenomenon associated with greater actin polymerization and IFN-γ and IL-4 higher expression. During experimental infection, lower cardiac nests, inflammatory infiltrate and fibrosis were observed in mice infected and treated with rP21. These results were correlated with large expression of IFN-γ counterbalanced by high levels of IL-10, which was consistent with the lower cardiac tissue injury found in these mice. We have also observed that upon stress, such as that induced by the presence of the IFN-γ cytokine, T. cruzi produced more P21. The effect of P21 in controlling the replication of T. cruzi, may indicate an evolutionary mechanism of survival developed by the parasite. Thus, when subjected to different stress conditions, the protozoan produces more P21, which induces T. cruzi latency in the host organism, enabling the protozoan to evade the host's immune system.
Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Malaria/parasitología , Mioblastos/parasitología , Miocardio/patología , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/fisiología , Enfermedad Aguda , Animales , Línea Celular , Interacciones Huésped-Parásitos , Humanos , Evasión Inmune , Péptidos y Proteínas de Señalización Intercelular/genética , Interferón gamma/metabolismo , Malaria/inmunología , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Carga de Parásitos , Proteínas Protozoarias/genéticaRESUMEN
B cells contribute to the immune system in many ways such as antigen presentation to CD4+ T cells, secretion of cytokines and lymphoid tissue organogenesis. Furthermore, they are the only cell type capable of producing immunoglobulins. B cells also account for critical aspects of the resistance against intracellular pathogens. Trypanosoma cruzi is an intracellular parasite that sabotages humoral response by depletion of immature B cells. Polyclonal activation and secretion of non-specific antibodies are also other mechanisms used by T cruzi to evade and subvert the mammalian host immune system, leading to increased parasitemia and susceptibility to Chagas' disease. It remained unclear whether B cell depletion occurs due to direct contact with T. cruzi or results from a global increase in inflammation. Unlike previous reports, we demonstrated in this study that T. cruzi infects human B cells, resulting in parasite-induced activation of caspase-7 followed by proteolytic cleavage of phospholipase Cγ1 and cell death. These data contribute to explain the mechanisms ruling B-cell depletion and evasion of the immune response by T. cruzi.
Asunto(s)
Actinas/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Caspasa 7/metabolismo , Interacciones Huésped-Patógeno , Fosfolipasa C gamma/metabolismo , Trypanosoma cruzi/inmunología , Muerte Celular , Enfermedad de Chagas/inmunología , Enfermedad de Chagas/metabolismo , Enfermedad de Chagas/parasitología , Humanos , ProteolisisRESUMEN
B cells contribute to the immune system in many ways such as antigen presentation to CD4+ T cells, secretion of cytokines and lymphoid tissue organogenesis. Furthermore, they are the only cell type capable of producing immunoglobulins. B cells also account for critical aspects of the resistance against intracellular pathogens. Trypanosoma cruzi is an intracellular parasite that sabotages humoral response by depletion of immature B cells. Polyclonal activation and secretion of non-specific antibodies are also other mechanisms used by T cruzi to evade and subvert the mammalian host immune system, leading to increased parasitemia and susceptibility to Chagas’ disease. It remained unclear whether B cell depletion occurs due to direct contact with T. cruzi or results from a global increase in inflammation. Unlike previous reports, we demonstrated in this study that T. cruzi infects human B cells, resulting in parasite-induced activation of caspase-7 followed by proteolytic cleavage of phospholipase Cgama1 and cell death. These data contribute to explain the mechanisms ruling B-cell depletion and evasion of the immune response by T. cruzi.
RESUMEN
BACKGROUND: TcP21 is a ubiquitous secreted protein of Trypanosoma cruzi and its recombinant form (rP21) promotes parasite cell invasion and acts as a phagocytosis inducer by activating actin polymerisation in the host cell. OBJECTIVE: Our goal was to evaluate if the additional supplementation of rP21 during a prime/boost/challenge scheme with T. cruzi TCC attenuated parasites could modify the well-known protective behavior conferred by these parasites. METHODS: The humoral immune response was evaluated through the assessment of total anti-T. cruzi antibodies as well as IgG subtypes. IFN-γ, TNF-α and IL-10 were measured in supernatants of splenic cells stimulated with total parasite homogenate or rP21. FINDINGS: Our results demonstrated that, when comparing TCC+rP21 vs. TCC vaccinated animals, the levels of IFN-γ were significantly higher in the former group, while the levels of IL-10 and TNF-α were significantly lower. Further, the measurement of parasite load after lethal challenge showed an exacerbated infection and parasite load in heart and skeletal muscle after pre-treatment with rP21, suggesting the important role of this protein during parasite natural invasion process. MAIN CONCLUSION: Our results demonstrated that rP21 may have adjuvant capacity able to modify the cytokine immune profile elicited by attenuated parasites.
Asunto(s)
Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Enfermedad de Chagas/inmunología , Proteínas Protozoarias/inmunología , Trypanosoma cruzi/inmunología , Vacunas Atenuadas/inmunología , Animales , Enfermedad de Chagas/prevención & control , Modelos Animales de Enfermedad , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Interferón-alfa/sangre , Interferón-alfa/inmunología , Interferón gamma/sangre , Interferón gamma/inmunología , Interleucina-10/sangre , Interleucina-10/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Fagocitosis , Vacunas Atenuadas/administración & dosificaciónRESUMEN
Classâ 1 myosins (Myo1s) were the first unconventional myosins identified and humans have eight known Myo1 isoforms. The Myo1 family is involved in the regulation of gene expression, cytoskeletal rearrangements, delivery of proteins to the cell surface, cell migration and spreading. Thus, the important role of Myo1s in different biological processes is evident. In this study, we have investigated the effects of pentachloropseudilin (PClP), a reversible and allosteric potent inhibitor of Myo1s, on angiogenesis. We demonstrated that treatment of cells with PClP promoted a decrease in the number of vessels. The observed inhibition of angiogenesis is likely to be related to the inhibition of cell proliferation, migration and adhesion, as well as to alteration of the actin cytoskeleton pattern, as shown on a PClP-treated HUVEC cell line. Moreover, we also demonstrated that PClP treatment partially prevented the delivery of integrins to the plasma membrane. Finally, we showed that PClP caused DNA strand breaks, which are probably repaired during the cell cycle arrest in the G1 phase. Taken together, our results suggest that Myo1s participate directly in the angiogenesis process.
Asunto(s)
Citoesqueleto de Actina/efectos de los fármacos , Inhibidores de la Angiogénesis/farmacología , Ciclo Celular/efectos de los fármacos , Hidrocarburos Clorados/farmacología , Integrinas/metabolismo , Pirroles/farmacología , Inhibidores de la Angiogénesis/toxicidad , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hidrocarburos Clorados/toxicidad , Integrinas/genética , Miosina Tipo I/metabolismo , Pirroles/toxicidad , ARN Mensajero/metabolismoRESUMEN
IL-9 is a pleiotropic cytokine, recently recognized as belonging to Th9 cells that are involved in various pathologies. We aimed to evaluate the role of IL-9 in the course of hepatic and renal fibrosis. Female C57BL/6 mice were treated subcutaneously with IL-9 10 ng/mouse and 20 ng/mouse for 40 days, alternating every 5 days each application, the negative control of which was treated with PBS and positive control with CCL4. IL-9 demonstrated fibrogenic activity, leading to increased collagen I and III deposition in both liver and kidney, as well as triggering lobular hepatitis. In addition, IL-9 induced an inflammatory response with recruitment of lymphocytes, neutrophils, and macrophages to both organs. The inflammation was present in the region of the portal and parenchymal zone in the liver and in the cortical and medullary zone in the kidney. IL-9 deregulated liver and kidney antioxidant activities. Our results showed that IL-9 was able to promote hepatorenal dysfunction. Moreover, IL-9 poses as a promising target for therapeutic interventions.
Asunto(s)
Fibrosis/etiología , Interleucina-9/efectos adversos , Riñón/patología , Hígado/patología , Animales , Colágeno/metabolismo , Femenino , Inflamación/inducido químicamente , Inflamación/patología , Riñón/fisiología , Hígado/fisiología , Ratones , Ratones Endogámicos C57BLRESUMEN
BACKGROUND TcP21 is a ubiquitous secreted protein of Trypanosoma cruzi and its recombinant form (rP21) promotes parasite cell invasion and acts as a phagocytosis inducer by activating actin polymerisation in the host cell. OBJECTIVE Our goal was to evaluate if the additional supplementation of rP21 during a prime/boost/challenge scheme with T. cruzi TCC attenuated parasites could modify the well-known protective behavior conferred by these parasites. METHODS The humoral immune response was evaluated through the assessment of total anti-T. cruzi antibodies as well as IgG subtypes. IFN-γ, TNF-α and IL-10 were measured in supernatants of splenic cells stimulated with total parasite homogenate or rP21. FINDINGS Our results demonstrated that, when comparing TCC+rP21 vs. TCC vaccinated animals, the levels of IFN-γ were significantly higher in the former group, while the levels of IL-10 and TNF-α were significantly lower. Further, the measurement of parasite load after lethal challenge showed an exacerbated infection and parasite load in heart and skeletal muscle after pre-treatment with rP21, suggesting the important role of this protein during parasite natural invasion process. MAIN CONCLUSION Our results demonstrated that rP21 may have adjuvant capacity able to modify the cytokine immune profile elicited by attenuated parasites.
Asunto(s)
Humanos , Vacunas Atenuadas/uso terapéutico , Proteínas de Unión al GTP rho/análisis , Trypanosoma cruzi , Enfermedad de Chagas/transmisiónRESUMEN
Class 1 myosins (Myo1s) were the first unconventional myosins identified and humans have eight known Myo1 isoforms. The Myo1 family is involved in the regulation of gene expression, cytoskeletal rearrangements, delivery of proteins to the cell surface, cell migration and spreading. Thus, the important role of Myo1s in different biological processes is evident. In this study, we have investigated the effects of pentachloropseudilin (PClP), a reversible and allosteric potent inhibitor of Myo1s, on angiogenesis. We demonstrated that treatment of cells with PClP promoted a decrease in the number of vessels. The observed inhibition of angiogenesis is likely to be related to the inhibition of cell proliferation, migration and adhesion, as well as to alteration of the actin cytoskeleton pattern, as shown on a PClP‐treated HUVEC cell line. Moreover, we also demonstrated that PClP treatment partially prevented the delivery of integrins to the plasma membrane. Finally, we showed that PClP caused DNA strand breaks, which are probably repaired during the cell cycle arrest in the G1 phase. Taken together, our results suggest that Myo1s participate directly in the angiogenesis process.
RESUMEN
Leishmaniasis is one of the most important neglected tropical diseases (NTDs) that are especially common among low-income populations in developing regions of Africa, Asia, and the Americas. Many natural products, particularly alkaloids, have been reported to have inhibitory activity against arginase, the key enzyme in the pathology caused by Leishmania sp. In this way, piperidine alkaloids (-)-cassine (1), (-)-spectaline (2), (-)-3-O-acetylcassine (3), and (-)-3-O-acetylspectaline (4) were isolated from Senna spectabilis flowers. These compounds (1/2 and 3/4) initially present as homologous mixtures were separated by high performance liquid chromatography and evaluated against the promastigote phase of Leishmania amazonensis. In addition, molecular docking simulations were implemented in order to probe the binding modes of the ligands 1-4 to the amino acids in the active site of L. amazonensis arginase. Alkaloid 2 (IC50 15.81⯵gâ¯mL-1) was the most effective against L. amazonensis. Compounds 2 and 4, with larger side chain, were more effective against the parasite than compounds 1 and 3. The cell viability test on Vero cells revealed that compound 2 (CC50 66.67⯵gâ¯mL-1) was the most toxic. The acetyl group in the 3-O position of the parent structures reduced the leishmanicidal activity and the toxicity of the alkaloids. Further, molecular docking suggested that Asn143 is essential for arginase to interact with (-)-spectaline-derived compounds, which agreed with the IC50 measurements. Our findings revealed that S. spectabilis is an important source of piperidine alkaloids with leishmanicidal activity. Moreover, the natural compound 3 has been isolated for the first time. Experimental investigation combined with theoretical study advances knowledge about the enzyme binding site mode of interaction and contributes to the design of new bioactive drugs against Leishmania infection.
Asunto(s)
Alcaloides/farmacología , Antiprotozoarios/farmacología , Leishmania/efectos de los fármacos , Leishmaniasis/tratamiento farmacológico , Piperidinas/farmacología , Senna/química , Alcaloides/química , Alcaloides/aislamiento & purificación , Antiprotozoarios/química , Antiprotozoarios/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Simulación del Acoplamiento Molecular , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Piperidinas/química , Piperidinas/aislamiento & purificación , Relación Estructura-ActividadRESUMEN
Natural products represent a source of biologically active molecules that have an important role in drug discovery. The aromatic plant Blepharocalyx salicifolius has a diverse chemical constitution but the biological activities of its essential oils have not been thoroughly investigated. The aims of this paper were to evaluate in vitro cytotoxic, antifungal and antibacterial activities of an essential oil from leaves of B. salicifolius and to identify its main chemical constituents. The essential oil was extracted by steam distillation, chemical composition was determined by gas chromatography/mass spectrometry, and biological activities were performed by a microdilution broth method. The yield of essential oil was 0.86% (w/w), and the main constituents identified were bicyclogermacrene (17.50%), globulol (14.13%), viridiflorol (8.83%), γ-eudesmol (7.89%) and α-eudesmol (6.88%). The essential oil was cytotoxic against the MDA-MB-231 (46.60 µg·mL-1) breast cancer cell line, being more selective for this cell type compared to the normal breast cell line MCF-10A (314.44 µg·mL-1). Flow cytometry and cytotoxicity results showed that this oil does not act by inducing cell death, but rather by impairment of cellular metabolism specifically of the cancer cells. Furthermore, it presented antifungal activity against Paracoccidioides brasiliensis (156.25 µg·mL-1) but was inactive against other fungi and bacteria. Essential oil from B. salicifolius showed promising biological activities and is therefore a source of molecules to be exploited in medicine or by the pharmaceutical industry.
Asunto(s)
Myrtaceae/química , Aceites Volátiles/química , Aceites Volátiles/farmacología , Antibacterianos/farmacología , Antifúngicos/farmacología , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Pruebas de Sensibilidad Microbiana , Hojas de la Planta/químicaRESUMEN
Chronic chagasic cardiomyopathy (CCC) is arguably the most important form of the Chagas Disease, caused by the intracellular protozoan Trypanosoma cruzi; it is estimated that 10-30% of chronic patients develop this clinical manifestation. The most common and severe form of CCC can be related to ventricular abnormalities, such as heart failure, arrhythmias, heart blocks, thromboembolic events and sudden death. Therefore, in this study, we proposed to evaluate the anti-angiogenic activity of a recombinant protein from T. cruzi named P21 (rP21) and the potential impact of the native protein on CCC. Our data suggest that the anti-angiogenic activity of rP21 depends on the protein's direct interaction with the CXCR4 receptor. This capacity is likely related to the modulation of the expression of actin and angiogenesis-associated genes. Thus, our results indicate that T. cruzi P21 is an attractive target for the development of innovative therapeutic agents against CCC.
Asunto(s)
Inhibidores de la Angiogénesis/metabolismo , Enfermedad de Chagas/etiología , Proteínas Protozoarias/metabolismo , Trypanosoma cruzi/metabolismo , Actinas/metabolismo , Inhibidores de la Angiogénesis/farmacología , Animales , Línea Celular , Proliferación Celular , Enfermedad de Chagas/metabolismo , Enfermedad de Chagas/parasitología , Citoesqueleto/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Matriz Extracelular , Regulación de la Expresión Génica , Humanos , Ratones , Modelos Biológicos , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Multimerización de Proteína , Proteínas Protozoarias/farmacología , Receptores CXCR4 , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacologíaRESUMEN
Host actin cytoskeleton polymerization has been shown to play an important role during Trypanosoma cruzi internalization into mammalian cell. The structure and dynamics of the actin cytoskeleton in cells are regulated by a vast number of actin-binding proteins. Here we aimed to verify the impact of AFAP-1L1, during invasion and multiplication of T. cruzi. Knocking-down AFAP-1L1 increased parasite cell invasion and intracellular multiplication. Thus, we have shown that the integrity of the machinery formed by AFAP-1L1 in actin cytoskeleton polymerization is important to hinder parasite infection.
Asunto(s)
Citoesqueleto de Actina/metabolismo , Proteínas Adaptadoras Transductoras de Señales/farmacología , Proteínas de Microfilamentos/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Enfermedad de Chagas/parasitología , Citoplasma/metabolismo , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Trypanosoma cruzi/metabolismoRESUMEN
Chagas disease, which is caused by the parasite Trypanosoma cruzi, is an important cause of cardiomyopathy in Latin America. It is estimated that 10%-30% of all infected individuals will acquire chronic chagasic cardiomyopathy (CCC). The etiology of CCC is multifactorial and involves parasite genotype, host genetic polymorphisms, immune response, signaling pathways and autoimmune progression. Herein we verified the impact of the recombinant form of P21 (rP21), a secreted T. cruzi protein involved in host cell invasion, on progression of inflammatory process in a polyester sponge-induced inflammation model. Results indicated that rP21 can recruit immune cells induce myeloperoxidase and IL-4 production and decrease blood vessels formation compared to controls in vitro and in vivo. In conclusion, T. cruzi P21 may be a potential target for the development of P21 antagonist compounds to treat chagasic cardiomyopathy.