Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 23(17): 7869-7875, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37589447

RESUMEN

Spintronic devices have recently attracted a lot of attention in the field of unconventional computing due to their non-volatility for short- and long-term memory, nonlinear fast response, and relatively small footprint. Here we demonstrate experimentally how voltage driven magnetization dynamics of dual free layer perpendicular magnetic tunnel junctions can emulate spiking neurons in hardware. The output spiking rate was controlled by varying the dc bias voltage across the device. The field-free operation of this two-terminal device and its robustness against an externally applied magnetic field make it a suitable candidate to mimic the neuron response in a dense neural network. The small energy consumption of the device (4-16 pJ/spike) and its scalability are important benefits for embedded applications. This compact perpendicular magnetic tunnel junction structure could finally bring spiking neural networks to sub-100 nm size elements.

2.
ChemSusChem ; 11(16): 2681-2694, 2018 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-29975819

RESUMEN

A green, template-free and easy-to-implement strategy was developed to access holey g-C3 N4 (GCN) nanosheets doped with carbon. The protocol involves heating dicyandiamide with ß-cyclodextrin (ßCD) prior to polymerization. The local symmetry of the GCN skeleton is broken, yielding CxGCN (x corresponds to the initial amount of ßCD used) with pores and a distorted structure. The electronic, emission, optical and textural properties of the best-performing material, C2GCN, were significantly modified as compared to bulk GCN. The spectroscopic and luminescent features of C2GCN show the characteristic π-π* electronic transition of GCN, accompanied by much stronger n-π* electronic transitions owing to the porous and distorted network. These new electronic transitions, along with the presence of additional carbon synergistically contributed to enhanced visible light absorption and restrained recombination of electron-hole pairs. Steady-state and time-resolved photoluminescence showed an effective quench of the fluorescence emission, accompanied by a decrease of fluorescence lifetime of C2GCN (2.20 ns) in comparison with GCN (5.85 ns), owing to the delocalization of electron and holes to new recombination centers. The photocatalytic activity of C2GCN was attributed to efficient charge carrier separation and improved visible-light absorbing ability. As result, C2GCN exhibited ∼5 times higher photocatalytic H2 generation under visible light than bulk GCN.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA