Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 14(7): 1100-1107, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29333557

RESUMEN

Slippery liquid-infused porous surfaces (SLIPS) are porous nanostructures impregnated with a low surface tension lubricant. They have recently shown great promise in various applications that require non-wettable superhydrophobic surfaces. In this paper, we investigate experimentally the influence of the oil thickness on the wetting properties and drop impact dynamics of new SLIPS. By tuning the thickness of the oil layer deposited through spin-coating, we show that a sufficiently thick layer of oil is necessary to avoid dewetting spots on the porous nanostructure and thus increasing the homogeneity of the liquid distribution. Drop impact on these surfaces is investigated with a particular emphasis on the spreading and rebound dynamics when varying the oil thickness and the Weber number.

2.
Phys Rev Lett ; 115(1): 016101, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-26182109

RESUMEN

On periodic superhydrophobic surfaces the receding contact angle often scales with the surface fraction, as expected from a simple rule of mixture, the Cassie relation. However, it has been argued that energy averaging breaks down owing to line pinning, and that line fraction scaling should apply instead. From experiments and simulations we show that proper inclusion of triple line defects introduce surface fraction scaling in the line depinning threshold. In contrast to the Cassie relation and in agreement with the data, this dependence is strongly nonlinear due to triple line elasticity.

3.
Eur Phys J E Soft Matter ; 15(2): 97-116, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-15517459

RESUMEN

We perform traction experiments on viscous liquids highly confined between parallel plates, a geometry known as the probe-tack test in the adhesion community. Direct observation during the experiment coupled to force measurement shows the existence of several mechanisms for releasing the stress: while fingering is favored for low traction velocities, low confinement and low viscosity, nucleation of bubbles occurs in the opposite conditions. It is possible to quantitatively predict the transition between the two regimes and, in many respects, describe the shape of the force response. Using a model for purely viscous fluids, we also present a phase diagram for the different force peak regimes that remarkably accounts for the data. Our results show that conspicuous features of the traction curve commonly thought to be characteristic of soft viscoelastic solids like adhesives are already encountered in liquid materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA