Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(32): 29568-29584, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37599987

RESUMEN

New lyotropic, fragranced, viscoelastic fluid with a complex structure is obtained from fragranced microemulsions by the addition of a fatty acid. Nonhomogeneous mixing of an appropriate nonionic surfactant, a fatty acid, and a fragrance oil led to the formation of anisotropically shaped and highly oriented micelles in aqueous solution. The nano- and microstructures, and consequently the viscosity, are controlled by the balance of fatty acids used as a cosurfactant and fragrance molecules, which partly behave as a cosurfactant and partly segregate in the micelles of the hydrophilic nonionic surfactant. The transition from isotropic microemulsion to a more structured viscoelastic solution is characterized by X-ray scattering and rheological methods. Considering our X-ray scattering results, we propose a structure composed of planar sheets of ellipsoidal micelles arranged in a lamellar type of stacking. The complex structured, low viscous, transparent fluid is capable of solubilizing a fragrance inside the ellipsoidal micelles, as well as retaining microparticles containing fragrance, without the addition of a polymeric thickener or another gelator. These features allow the creation of a 2-in-1 fragrance-solubilizing liquid product compatible with all types of home and body care consumer products.

2.
J Chem Phys ; 157(21): 214901, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36511558

RESUMEN

Swollen cubic lyotropic ternary phases with Pn3m symmetry and reduced hardness were obtained from a specific binary mixture of cubic phase-forming (phytantriol) and lamellar phase-forming (decaglycerol monooleate) compounds. The microstructures were determined by using a small-angle x-ray scattering technique. The softness and temperature-induced phase transitions were investigated by means of rheology. The incorporation of a surface-active fragrance compound (linalool) at concentrations up to 6 wt. % induced a structural transition toward a softer Im3m bulk cubic phase with longer water channels. Higher linalool concentrations allowed for the spontaneous dispersion of the bulk cubic phase into microscopic particles with a cubic structure (cubosomes).


Asunto(s)
Tensoactivos , Tensoactivos/química , Transición de Fase , Temperatura , Difracción de Rayos X
3.
Chemistry ; 27(53): 13457-13467, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34270124

RESUMEN

Despite their intrinsic hydrolysable character, imine bonds can become remarkably stable in water when self-assembled in amphiphilic micellar structures. In this work, we systematically studied some of these structures and the influence of various parameters that can be used to take control of their hydrolysis, including pH, concentration, the position of the imine function in the amphiphilic structure, relative lengths of the linked hydrophilic and hydrophobic moieties. Thermodynamic and kinetic data led us to the rational design of stable imines in water, partly based on the location of the imine function within the hydrophobic part of the amphiphile and on a predictable quantitative term that we define as the total hydrophilic-lipophilic balance (HLB). In addition, we show that such stable systems are also stimuli-responsive and therefore, of potential interest in trapping and releasing micellar components on demand.


Asunto(s)
Iminas , Micelas , Hidrólisis , Interacciones Hidrofóbicas e Hidrofílicas , Agua
4.
Chemistry ; 27(53): 13468-13476, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34270131

RESUMEN

Amphiphilic imines prepared by condensation of a hydrophobic fragrance aldehyde with a hydrophilic amine derived from a poly(propylene oxide) and poly(ethylene oxide) diblock copolymer were investigated as cleavable surfactant profragrances in applications of functional perfumery. In water, the cleavable surfactants assemble into micelles that allow solubilization of perfume molecules that are not covalently attached to the surfactant. Dynamic headspace analysis on a glass surface showed that solubilized perfume molecules evaporated in a similar manner in the presence of the cleavable surfactant as compared with a non-cleavable reference surfactant. Under application conditions, the cleavable surfactant imine hydrolysed to release the covalently linked fragrance aldehyde. The profragrances were stable during storage in aqueous media, and upon dilution showed a blooming effect for the hydrolytical fragrance release and a more balanced performance of a solubilized perfume by retaining the more volatile fragrances and boosting the evaporation of the less volatile fragrances.


Asunto(s)
Perfumes , Tensoactivos , Interacciones Hidrofóbicas e Hidrofílicas , Micelas , Odorantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA