Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem B ; 123(44): 9481-9490, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31596587

RESUMEN

Chromophores susceptible to light-induced trans-cis isomerization embedded in cylindrical micelles can modify micelles and their light-responsive performance. A small chromophore (4-(phenylazo)benzoate ion) is embedded in cylindrical micelles made of cetyltrimethylammonium bromide (CTAB) and sodium salicylate (NaSal) in water. The microstructure is examined by scanning electron microscopy (SEM) and nuclear magnetic resonance (NMR). Rheological behavior and the length scales of the micellar network are determined by rheology and microrheology. The chromophore substantially modifies the micelles even without UV irradiation. The larger is the chromophore concentration, the smaller is the micellar length. Additional length scales of the micellar network do not substantially vary even when NaCl is added. Chromophore incorporation also modifies the rheology of the micellar solution, although gradient shear banding is preserved. Viscosity decreases as the chromophore concentration increases, and viscoelastic spectra are modified, but when they are correctly rescaled, they can be superimposed. The addition of the chromophore makes the fluids more Maxwellian, particularly when NaCl is also added. When the chromophore is incorporated into the micelles, there is a response after UV irradiation, although it does not produce a significant rheological change.

2.
Soft Matter ; 14(35): 7264-7276, 2018 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-30140801

RESUMEN

A diblock copolymer made of poly(1,4-butadiene)-block-polyethylene oxide, with a degree of polymerization of the polybutadiene and polyethylene oxide blocks of 37 and 57, respectively, self-assembles in water as worm-like micelles determined by small angle neutron scattering with an average diameter of ∼12.7 nm, a core radius of ∼2.7 nm, a shell radius of ∼3 nm, and an estimated persistence length of >225 nm. Worm-like micelles of almost the same diblock copolymer, but with a smaller polyethylene oxide block (degree of polymerization 45) were also measured. The worm-like micelles were also observed with negative staining using low energy electron microscopy. The boundary between dilute and semidilute regimes was estimated to be ∼0.8 wt%. The viscoelastic spectra at low and intermediate frequencies do not follow the Maxwell model. These micelles do not present the same rheological behavior of worm-like micelle solutions of conventional surfactants. The slow dynamics of the self-assembly explains this uncommon behavior for the system. Any micellar rearrangement is impeded due to the extremely high hydrophobicity of the polybutadiene block; stress mainly relaxes by the reptation mechanism. Using diffusive wave spectroscopy, we measured the mean square displacement of particles in the micellar solution. From the mean square displacement, we obtained G'(ω) and G''(ω) at high frequencies. |G*| exhibits a power law behavior showing the stress relaxation changes as frequency increases, first dominated by the Rouse-Zimm modes and then by the bending modes of the Kuhn segments. This allowed us to estimate the worm-like micelle persistence lengths that depend on the copolymer concentration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA