RESUMEN
We develop a multicomponent lattice Boltzmann (LB) model for the two-dimensional Rayleigh-Taylor turbulence with a Shan-Chen pseudopotential implemented on GPUs. In the immiscible case, this method is able to accurately overcome the inherent numerical complexity caused by the complicated structure of the interface that appears in the fully developed turbulent regime. The accuracy of the LB model is tested both for early and late stages of instability. For the developed turbulent motion, we analyse the balance between different terms describing variations of the kinetic and potential energies. Then we analyse the role of the interface in the energy balance and also the effects of the vorticity induced by the interface in the energy dissipation. Statistical properties are compared for miscible and immiscible flows. Our results can also be considered as a first validation step to extend the application of LB model to three-dimensional immiscible Rayleigh-Taylor turbulence. This article is part of the theme issue 'Progress in mesoscale methods for fluid dynamics simulation'.
RESUMEN
Ocular toxoplasmosis is the major cause of infectious posterior uveitis worldwide, inducing visual field defect and/or blindness. Despite the severity of this disease, an effective treatment is still lacking. In this study, spiramycin-loaded PLGA implants were developed aiming at the treatment of ocular toxoplasmosis. Implants were manufactured by a hot-molding technique, characterized by Fourier Transform Infrared Spectroscopy, X-Ray Diffraction, Differential Scanning Calorimetry, Scanning Electron Microscopy; evaluated in terms of ocular biocompatibility by immunofluorescence, flow cytometry, cell migration, Hen's egg test-chorioallantoic membrane (HET-CAM) irritation test; and investigated in terms of in vitro efficacy against Toxoplasma gondii . Characterization techniques indicated that spiramycin was dispersed into the polymeric chains and both substances preserved their physical structures in implants. The HET-CAM test indicated that implants did not induce hemorrhage or coagulation, being non-irritant to the CAM. ARPE-19 cells showed viability by MTT assay, and normality in cell cycle kinetics and morphology, without stimulating cell death by apoptosis. Finally, they were highly effective against intracellular parasites without inducing human retinal pigment epithelial cell death. In conclusion, spiramycin-loaded PLGA implants represent a promising therapeutic alternative for the local treatment of ocular toxoplasmosis.