Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(4): 043801, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38335346

RESUMEN

Effective cross sections of nano-objects are fundamental properties that determine their ability to interact with light. However, measuring them for individual resonators directly and quantitatively remains challenging, particularly because of the very low signals involved. Here, we experimentally measure the thermal emission cross section of metal-insulator-metal nanoresonators using a stealthy hyperuniform distribution based on a hierarchical Poisson-disk algorithm. In such distributions, there are no long-range interactions between antennas, and we show that the light emitted by such metasurfaces behaves as the sum of cross sections of independent nanoantennas, enabling direct retrieval of the single resonator contribution. The emission cross section at resonance is found to be on the order of λ_{0}^{2}/3, a value that is nearly 3 times larger than the theoretical maximal absorption cross section of a single particle, but remains smaller than the maximal extinction cross section. This measurement technique can be generalized to any single resonator cross section, and we also apply it to a lossy dielectric layer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA