Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Pollut Bull ; 174: 113173, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34875477

RESUMEN

Ongoing global changes such as increasing sea-surface temperatures, decreasing acidity levels, and expanding oxygen-minimum zone may impact on the biogeochemical cycles of trace metals in ocean systems. Each trace metal has unique characteristics and a distinctive distribution pattern controlled by chemical, biological, and physical processes that occur in ocean systems. The correlations of variability drivers in trace metals are interesting topics for investigation. Following up on ocean research in the coastal and estuary area, we specifically review the distribution of trace metals in seawater and suspended and surface sediment. The marginal seas usually feature significant terrestrial inputs accompanied by several active water-mass currents. The purpose of this review is to provide an overview of variability related to trace-metal distribution in coastal and estuary systems and to specifically describe the distribution, profile and drivers that affect trace metals variability.


Asunto(s)
Metales Pesados , Oligoelementos , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Estuarios , Sedimentos Geológicos , Metales Pesados/análisis , Agua de Mar , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis
2.
Environ Monit Assess ; 193(11): 705, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34623520

RESUMEN

Trace metals are vital to primary productivity and play an essential role as main components in regulating oceanic biogeochemical cycles. Dissolved and particulate trace metals within the water column may vary due to primary production, temperature, and nutrient changes, factors that may also vary spatially and temporally. Furthermore, assessment of trace metals mainly relies on in situ observation, and so wide-area investigation of trace-metal concentration may be challenging and subject to technical constraints. A specific approach is therefore necessary that combines biogeochemical proxies, satellite data, and trace-metal linear correlation. This study aims to assess the potential spatio-temporal variability of sea surface cadmium (Cd) and copper (Cu) concentrations in Indonesian seas and surrounding areas. The correlations of Cd and Cu concentrations with primary production and nutrient data were used to convert hindcast satellite data into estimates of the metals' concentrations. The potential variability of trace metals can be determined by overlaying both data. Indonesia's Fisheries Management Areas (FMAs) were used for data clustering and analysis. The results show that Cd and Cu trace metals have similar distribution patterns throughout the year. However, dissolved Cu has a more diverse coverage area than dissolved Cd, including within the Halmahera, Seram, and Maluku Seas (FMAs 716 and 717), the Makassar Strait (FMA 717), and the Java-Sumatra upwelling area (FMA 573). Both Cd and Cu concentrations in the Java-Sumatra upwelling region follow the periodic upwelling pattern. Overall, both Cd and Cu show a declining trend in concentration from 2012 to 2019. It is estimated that dissolved Cd concentration declined from 1500-2000 pmol/kg in 2012 to 1000-1500 pmol/kg in 2019 for all locations. Dissolved Cu concentration decreased from 30-35 nmol/kg in 2012 to 25-30 nmol/kg in 2019. Estimated dissolved Cd and Cu follow the linear functions of silicate (SiO4), nitrate (NO3), and primary productivity. The fluctuation of anthropogenic activities and global warming are likely to indirectly impact the decline in metal concentrations by affecting nutrients and primary productivity.


Asunto(s)
Metales Pesados , Oligoelementos , Cadmio/análisis , Cobre/análisis , Monitoreo del Ambiente , Metales Pesados/análisis , Oligoelementos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA