Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 23(11)2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37300032

RESUMEN

This paper explores the potential of a low-cost, advanced video-based technique for the assessment of structural damage to buildings caused by seismic loading. A low-cost, high-speed video camera was utilized for the motion magnification processing of footage of a two-story reinforced-concrete frame building subjected to shaking table tests. The damage after seismic loading was estimated by analyzing the dynamic behavior (i.e., modal parameters) and the structural deformations of the building in magnified videos. The results using the motion magnification procedure were compared for validation of the method of the damage assessment obtained through analyses of conventional accelerometric sensors and high-precision optical markers tracked using a passive 3D motion capture system. In addition, 3D laser scanning to obtain an accurate survey of the building geometry before and after the seismic tests was carried out. In particular, accelerometric recordings were also processed and analyzed using several stationary and nonstationary signal processing techniques with the aim of analyzing the linear behavior of the undamaged structure and the nonlinear structural behavior during damaging shaking table tests. The proposed procedure based on the analysis of magnified videos provided an accurate estimate of the main modal frequency and the damage location through the analysis of the modal shapes, which were confirmed using advanced analyses of the accelerometric data. Consequently, the main novelty of the study was the highlighting of a simple procedure with high potential for the extraction and analysis of modal parameters, with a special focus on the analysis of the modal shape's curvature, which provides accurate information on the location of the damage in a structure, while using a noncontact and low-cost method.


Asunto(s)
Acelerometría , Diseño Interior y Mobiliario , Movimiento (Física) , Captura de Movimiento , Procesamiento de Señales Asistido por Computador
2.
Materials (Basel) ; 14(16)2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34443149

RESUMEN

Porous silicon carbide is a promising material for ceramic receivers in next-generation concentrated solar power receivers. To investigate its tolerance to thermal shock, accelerated ageing of large coupons (50 × 50 × 5 mm) was conducted in a solar furnace to investigate the effects of thermal cycling up to 1000 °C, with gradients of up to 22 °C/mm. Non-destructive characterization by computed X-ray tomography and ultrasonic inspection could detect cracking from thermal stresses, and this informed the preparation of valid specimens for thermophysical characterization. The effect of thermal ageing on transient thermal properties, as a function of temperature, was investigated by using the light-flash method. The thermophysical properties were affected by increasing the severity of the ageing conditions; thermal diffusivity decreased by up to 10% and specific heat by up to 5%.

3.
Materials (Basel) ; 11(4)2018 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-29669992

RESUMEN

Defects detection within a composite component, with the aim of understanding and predicting its mechanical behavior, is of great importance in the aeronautical field because the irregularities of the composite material could compromise functionality. The aim of this paper is to detect defects by means of non-destructive testing (NDT) on T-pull samples made by carbon fiber reinforced polymers (CFRP) and to evaluate their effect on the mechanical response of the material. Samples, obtained from an industrial stringer having an inclined web and realized with a polymeric filler between cap and web, were subjected to ultrasonic monitoring and then to T-pull mechanical tests. All samples were tested with the same load mode and the same test configuration. An experimental set-up consisting of a semiautomatic C-scan ultrasonic mapping system with a phased array probe was designed and developed, optimizing control parameters and implementing image processing software. The present work is carried out on real composites parts that are characterized by having their intrinsic defectiveness, as opposed to the previous similar results in the literature mainly obtained on composite parts with artificially produced defects. In fact, although samples under study were realized free from defects, ultrasonic mapping found defectiveness inside the material. Moreover, the ultrasonic inspection could be useful in detecting both the location and size of defects. Experimental data were critically analyzed and qualitatively correlated with results of T-pull mechanical tests in order to better understand and explain mechanical behavior in terms of fracture mode.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA