Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Cell Neurosci ; 18: 1442079, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39285939

RESUMEN

Age-related macular degeneration (AMD) is a major cause of blindness that affects people over 60. While aging is the prominent factor in AMD, studies have reported a higher prevalence of AMD in women compared to age-matched men. Higher levels of the innate immune response's effector proteins complement factor B and factor I were also found in females compared to males in intermediate AMD. However, the mechanisms underlying these differences remain elusive. Peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC-1α) is a key regulator of mitochondrial biogenesis and metabolic pathways. Previously, we showed that Pgc-1α repression and high-fat diet induce drastic AMD-like phenotypes in mice. Our recent data revealed that Pgc-1α repression alone can also induce retinal pigment epithelium (RPE) and retinal dysfunction in mice, and its inhibition in vitro results in lipid droplet accumulation in human RPE. Whether sex is a contributing factor in these phenotypes remains to be elucidated. Using electroretinography, we demonstrate that sex could influence RPE function during aging independent of Pgc-1α in wild-type (WT) mice. We further show that Pgc-1α repression exacerbates RPE and retinal dysfunction in females compared to aged-match male mice. Gene expression analyses revealed that Pgc-1α differentially regulates genes related to antioxidant enzymes and mitochondrial dynamics in males and females. RPE flat mounts immunolabeled with TOMM20 and DRP1 indicated a sex-dependent role for Pgc-1α in regulating mitochondrial fission. Analyses of mitochondrial network morphology suggested sex-dependent effects of Pgc-1α repression on mitochondrial dynamics. Together, our study demonstrates that inhibition of Pgc-1α induces a sex-dependent decline in RPE and retinal function in mice. These observations on the sex-dependent regulation of RPE and retinal function could offer novel insights into targeted therapeutic approaches for age-related RPE and retinal degeneration.

2.
Cell Death Dis ; 15(6): 385, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824126

RESUMEN

Drusen, the yellow deposits under the retina, are composed of lipids and proteins, and represent a hallmark of age-related macular degeneration (AMD). Lipid droplets are also reported in the retinal pigment epithelium (RPE) from AMD donor eyes. However, the mechanisms underlying these disease phenotypes remain elusive. Previously, we showed that Pgc-1α repression, combined with a high-fat diet (HFD), induce drastic AMD-like phenotypes in mice. We also reported increased PGC-1α acetylation and subsequent deactivation in the RPE derived from AMD donor eyes. Here, through a series of in vivo and in vitro experiments, we sought to investigate the molecular mechanisms by which PGC-1α repression could influence RPE and retinal function. We show that PGC-1α plays an important role in RPE and retinal lipid metabolism and function. In mice, repression of Pgc-1α alone induced RPE and retinal degeneration and drusen-like deposits. In vitro inhibition of PGC1A by CRISPR-Cas9 gene editing in human RPE (ARPE19- PGC1A KO) affected the expression of genes responsible for lipid metabolism, fatty acid ß-oxidation (FAO), fatty acid transport, low-density lipoprotein (LDL) uptake, cholesterol esterification, cholesterol biosynthesis, and cholesterol efflux. Moreover, inhibition of PGC1A in RPE cells caused lipid droplet accumulation and lipid peroxidation. ARPE19-PGC1A KO cells also showed reduced mitochondrial biosynthesis, impaired mitochondrial dynamics and activity, reduced antioxidant enzymes, decreased mitochondrial membrane potential, loss of cardiolipin, and increased susceptibility to oxidative stress. Our data demonstrate the crucial role of PGC-1α in regulating lipid metabolism. They provide new insights into the mechanisms involved in lipid and drusen accumulation in the RPE and retina during aging and AMD, which may pave the way for developing novel therapeutic strategies targeting PGC-1α.


Asunto(s)
Gotas Lipídicas , Metabolismo de los Lípidos , Degeneración Macular , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Epitelio Pigmentado de la Retina , Epitelio Pigmentado de la Retina/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Animales , Humanos , Ratones , Gotas Lipídicas/metabolismo , Degeneración Macular/metabolismo , Degeneración Macular/patología , Degeneración Macular/genética , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Masculino , Estrés Oxidativo
3.
Antioxidants (Basel) ; 12(2)2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36829944

RESUMEN

Initially discovered by Makuto Kuro-o in 1997, Klotho is a putative aging-suppressor gene when overexpressed and accelerates aging when deleted in mice. Previously, we showed that α-Klotho regulates retinal pigment epithelium (RPE) functions and protects against oxidative stress. However, the mechanisms by which Klotho influences RPE and retinal homeostasis remain elusive. Here, by performing a series of in vitro and in vivo experiments, we demonstrate that Klotho regulates cell viability under oxidative stress, mitochondrial gene expression and activity by inducing the phosphorylation of AMPK and p38MAPK, which in turn phosphorylate and activate CREB and ATF2, respectively, triggering PGC-1α transcription. The inhibition of Klotho in human RPE cells using CRISPR-Cas9 gene editing confirmed that a lack of Klotho negatively affects RPE functions, including mitochondrial activity and cell viability. Proteomic analyses showed that myelin sheath and mitochondrial-related proteins are downregulated in the RPE/retina of Kl-/- compared to WT mice, further supporting our biochemical observations. We conclude that Klotho acts upstream of the AMPK/PGC-1α pathway and regulates RPE/retinal resistance to oxidative stress, mitochondrial function, and gene and protein expressions. Thus, KL decline during aging could negatively impact retinal health, inducing age-related retinal degeneration.

4.
Sci Rep ; 10(1): 3674, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-32111892

RESUMEN

We compared outcomes of four different management modalities for diabetic VH. Patients with diabetic VH were identified in this retrospective study undertaken at King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia. Eyes were grouped based on the treatment received: control (observation only), intravitreal bevacizumab (IVB) injection(s), pars plana vitrectomy (PPV), and preoperative single IVB injection before PPV. Best-corrected visual acuity (BCVA) and status of VH were noted at baseline and the last follow up (Minimum: 6 months, maximum: 29 months). The proportion of eyes with Snellen BCVA improvement by two lines or more and VH clearance at the last follow up were compared between groups. The four groups - Control, IVB, PPV, and IVB-before-PPV had 23, 29, 17, and 20 eyes, respectively. The proportion of eyes gaining ≥2 lines was substantially higher in the IVB-before-PPV and PPV groups (90% and 77%, respectively) compared with IVB and observation groups (41% and 22%, respectively). Surgical treatment was associated with a 2.38 times higher likelihood of gaining ≥2 lines than the non-surgical one (incidence ratio: 2.38, 95% CI 1.19, 4.78 P = 0.015) after adjusting for age, hyperglycemia and BCVA at presentation. Less invasive treatment such as IVB injections did not result in the same amount of improvement in vision as did PPV. Prospective randomized studies are needed to better define the role of IVB injections in the management of diabetic VH.


Asunto(s)
Bevacizumab/administración & dosificación , Complicaciones de la Diabetes/terapia , Vitrectomía , Hemorragia Vítrea/terapia , Adulto , Anciano , Humanos , Inyecciones Intravítreas , Persona de Mediana Edad , Estudios Retrospectivos , Hemorragia Vítrea/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA