Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Dev Neurosci ; 44(6): 466-477, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35287128

RESUMEN

PURPOSE: During the juvenile stage, such areas as the hippocampus and corpus callosum (CC) are still immature and sensitive to stress exposure. The present study investigated whether two different types of stressors in the juvenile stage of life have a long-lasting impact on behavior and biological outcomes in adult rats. METHODS: Male juvenile rats were exposed to restraint or predator stress on postnatal day 25 (P25) for 3 days. Thirty-two days later (P60-74), behavioral and biological analyses were conducted. The behavioral analysis included measures of anxiety-like behavior and recognition memory. The biological analysis investigated gross cerebral morphology, based on volume analysis of the CC and hippocampus, perirhinal cortex thickness, and dendritic spine density. RESULTS: Neither restraint stress nor predator stress affected anxiety-like behavior or object recognition memory in adulthood. Body weight and adrenal gland weight were unaffected by both types of stress. Overall, volumetric measures of the CC and hippocampus were not significant, with no changes in perirhinal cortex thickness. Spine density in the medial prefrontal cortex also was unaffected, but a decrease in dendritic spine density was found in the hippocampus in response to restraint stress and an increase to predator stress. CONCLUSION: Short-term and daily restraint and predator stress during the juvenile stage had no long-lasting effects on anxiety-like behavior, object memory, volume of the CC or hippocampus, or perirhinal cortex thickness, but a decrease in dendritic spine density was found in the hippocampus. These findings suggest that different types of stressors have different impacts on microstructures in the brain without affecting behavior or the gross morphology of stress-sensitive brain areas.


Asunto(s)
Espinas Dendríticas , Corteza Prefrontal , Ratas , Animales , Masculino , Espinas Dendríticas/fisiología , Encéfalo , Hipocampo , Ansiedad , Estrés Psicológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA