Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS One ; 7(11): e49970, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23185502

RESUMEN

Fibroblast growth factors (FGFs) regulate the growth and progression of breast cancer. FGF signaling is transduced through FGF receptors 1-4, which have oncogenic or anti-oncogenic roles depending on the ligand and the cellular context. Our aim was to clarify the roles of FGFR1-3 in breast cancer cell growth in vitro and in vivo. Pools of S115 mouse breast cancer cells expressing shRNA against FGFR1, 2 and 3 were created by lentiviral gene transfer, resulting in cells with downregulated expression of FGFR1, FGFR2 or FGFR3 (shR1, shR2 and shR3 cells, respectively) and shLacZ controls. FGFR1-silenced shR1 cells formed small, poorly vascularized tumors in nude mice. Silencing of FGFR2 in shR2 cells was associated with strong upregulation of FGFR1 expression and the formation of large, highly vascularized tumors compared to the control tumors. Silencing FGFR3 did not affect cell survival or tumor growth. Overexpressing FGFR2 in control cells did not affect FGFR1 expression, suggesting that high FGFR1 expression in shR2 cells and tumors was associated with FGFR2 silencing by indirect mechanisms. The expression of FGFR1 was, however, increased by the addition of FGF-8 to starved shLacZ or MCF-7 cells and decreased by the FGFR inhibitor PD173074 in shR2 cells with an elevated FGFR1 level. In conclusion, our results demonstrate that FGFR1 is crucial for S115 breast cancer cell proliferation and tumor growth and angiogenesis, whereas FGFR2 and FGFR3 are less critical for the growth of these cells. The results also suggest that the expression of FGFR1 itself is regulated by FGF-8 and FGF signaling, which may be of importance in breast tumors expressing FGFs at a high level.


Asunto(s)
Neoplasias de la Mama , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos , Animales , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral/citología , Línea Celular Tumoral/metabolismo , Proliferación Celular , Femenino , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Neoplasias Experimentales/genética , Neoplasias Experimentales/metabolismo , Pirimidinas/farmacología , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 2 de Factor de Crecimiento de Fibroblastos/metabolismo , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/genética , Receptor Tipo 3 de Factor de Crecimiento de Fibroblastos/metabolismo , Transducción de Señal
2.
Mol Cell Endocrinol ; 253(1-2): 36-43, 2006 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-16723184

RESUMEN

In the search for androgen target genes responsible for malignant growth in S115 mouse mammary tumor cells we found that thrombospondin 1 (TSP1) expression was strongly downregulated by testosterone (Te). Experiments with cycloheximide suggested that Te repression of TSP1 was dependent on de novo protein synthesis. TSP1 repression by Te was preceded by the induction of fibroblast growth factor 8 (FGF8) expression. FGF8 has previously been shown to mediate androgen effects on proliferation of S115 cells by autocrine/paracrine mechanisms. It has also been shown to increase breast cancer cell growth as tumors in nude mice and to stimulate tumor angiogenesis. We studied here the possibility that FGF8 belonged to the Te-induced de novo synthesized proteins that mediate the effect of Te on TSP1 expression in these cells. We found that addition of FGF8b to in vitro cultures or ectopic expression of FGF8b in S115 cells repressed TSP1 expression at mRNA and protein levels even in the absence of Te. FGF2, another angiogenic member of FGF family, also downregulated TSP1 mRNA level in the in vitro cultures of S115 cells. The antisense oligonucleotides for FGF8 did not, however, prevent Te-repression of TSP1 mRNA expression and a neutralizing anti-FGF8b antibody only partially opposed Te induced downregulation of TSP1. These results suggest that both androgen and FGF8 inhibit TSP1 expression independently. They also suggest that opposite to many other androgen-induced responses in S115 cells, the effect of Te on the expression TSP1 is not mediated by FGF8.


Asunto(s)
Andrógenos/farmacología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Factor 8 de Crecimiento de Fibroblastos/farmacología , Trombospondina 1/metabolismo , Animales , Línea Celular Tumoral , Regulación hacia Abajo , Femenino , Factor 8 de Crecimiento de Fibroblastos/metabolismo , Ratones , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacología , ARN Mensajero/biosíntesis , Trombospondina 1/efectos de los fármacos , Trombospondina 1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA