Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38931470

RESUMEN

This study explores developing and optimizing a nanoemulsion (NE) system loaded with dipyridamole and roflumilast, aiming to improve skin penetration and retention. The NE formulation was further transformed into a nanoemulgel to enhance its application as a topical treatment for psoriasis. Solubility studies were conducted to select the oil, surfactant, and co-surfactant. Phase diagrams were constructed using the aqueous phase titration method. All the formulations were in nanoscale, and Formula (F2) (which contains oleic acid oil as the oil phase, a mixture of Surfactant Tween 80 and co-surfactant (ethanol) at a ratio of 1:2 in addition to distilled water as an aqueous phase in a ratio of 1:5:4, respectively) was the selected formula depending on the particle size, PDI, and zeta potential. Formula (F2) has the best ratio because it gives the smallest nanoemulsion globule size (particle size average of 167.1 nm), the best homogenicity (lowest PDI of 0.195), and the highest stability (higher zeta potential of -32.22). The selected formula was converted into a nanoemulgel by the addition of 0.5% (w/w) xanthan gum (average particle size of 172.7 nm) and the best homogenicity (lowest PDI of 0.121%) and highest stability (higher zeta potential of -28.31). In conclusion, the selected formula has accepted physical and chemical properties, which enhanced skin penetration.

2.
Cell Mol Biol (Noisy-le-grand) ; 69(9): 37-42, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37807336

RESUMEN

Fungal colonization of the soft denture liner is the first step in the development of denture-induced stomatitis. The study aims to assess apigenin and seashell nano-additives for their antifungal efficacy and their impact on the surface roughness of a soft denture liner. The study was accomplished in the Colleges of Dentistry in Duhok, Mosul and Hawler Medical Universities. The  Antifungal efficacy against Candida albicans was performed by the minimum inhibition concentration (MIC), for apigenin the MIC was determined by agar well diffusion and set at (0.25%, 0.5% and 1%) while for seashells, MIC was determined by broth dilution and set at (1.25%, 2.5% and 5%). Fungal adhesion was conducted on seven groups (unmodified soft liner and six groups of the modified liner with the antifungal concentrations (three for each nanoparticle). A total of forty-nine square-shaped specimens (10*10*2mm) of (GC, Super-soft, heat-cured, USA) soft liner were prepared, the adherent fungal cells were enumerated under a light microscope for each specimen in four fields and the results were expressed as fungal cells/mm2. For the surface roughness, forty-nine specimens of (20*10*3 mm) of the soft liner were prepared and the average surface roughness was obtained in µm using a profilometer (Talysurf, Taylor Hobson, UK). Apigenin and seashell-modified soft liner observed a significant decrease in both fungal adhesion and surface roughness compared to the unmodified liner and the reduction was related directly to the concentration of both additives. Apigenin and seashell nano-additives were effective as antifungal agents beside improving the surface roughness of the soft liner.


Asunto(s)
Antifúngicos , Alineadores Dentales , Animales , Antifúngicos/farmacología , Alineadores Dentales/microbiología , Apigenina/farmacología , Exoesqueleto , Propiedades de Superficie , Candida albicans
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA