Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 58(4): 1033-1039, 2019 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-30874152

RESUMEN

We report coherent imaging of objects behind opaque scattering media with only one piece of the power spectrum pattern. We solve the unique solution and improve algorithm speed for the inverse problem. Based on the proposed scattering-disturbance model, with only one piece of the Fourier transform power spectrum pattern under coherent illumination, we successfully reconstruct clear images of the objects fully hidden by an opaque diffuser. The experimental results demonstrate the feasibility of the reconstruction method and the scattering-disturbance model. Our method makes it possible to carry out snapshot coherent imaging of the objects obscured by scattering media, which extends the methodology of x-ray crystallography to visible-light scattering imaging for underwater and living biomedical imaging.

2.
Appl Opt ; 56(30): 8430-8435, 2017 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-29091623

RESUMEN

A direct-vision Amici prism is a desired dispersion element in the value of spectrometers and spectral imaging systems. In this paper, we focus on designing a direct-vision cyclo-olefin-polymer double Amici prism for spectral imaging systems. We illustrate a designed structure: E48R/N-SF4/E48R, from which we obtain 13 deg dispersion across the visible spectrum, which is equivalent to 700 line pairs/mm grating. We construct a simulative spectral imaging system with the designed direct-vision cyclo-olefin-polymer double Amici prism in optical design software and compare its imaging performance to a glass double Amici prism in the same system. The results of spot-size RMS demonstrate that the plastic prism can serve as well as their glass competitors and have better spectral resolution.

3.
Opt Lett ; 38(21): 4401-4, 2013 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-24177104

RESUMEN

We demonstrate the evolution of picosecond pulses in silicon nanowire waveguides by sum frequency generation cross-correlation frequency-resolved optical gating (SFG-XFROG) and nonlinear Schrödinger equation (NLSE) modeling. Due to the unambiguous temporal direction and ultrahigh sensitivity of the SFG-XFROG, which enable observation of the pulse accelerations, the captured pulses' temporal and spectral characteristics showed remarkable agreement with NLSE predictions. The temporal intensity redistribution of the pulses through the silicon nanowire waveguide for various input pulse energies is analyzed experimentally and numerically to demonstrate the nonlinear contributions of self-phase modulation, two-photon absorption, and free carriers. It indicates that free carrier absorption dominates the pulse acceleration. The model for pulse evolution during propagation through arbitrary lengths of silicon nanowire waveguides is established by NLSE, in support of chip-scale optical interconnects and signal processing.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA