Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 14: 1263917, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38033565

RESUMEN

The gut microbiota plays an essential role in maintaining the health and fitness of the host organism. As a critical environmental variable, temperature exerts significant effects on animal survival and reproduction. Elevated temperatures can influence the composition and function of the animal gut microbiota, which may have potentially detrimental effects on the host. The crocodile lizard (Shinisaurus crocodilurus) is an ancient and currently endangered reptile species due to human hunting and habitat destruction. Given the predicted shifts in global temperatures in the next century, it is important to understand how warming affects the gut microbiota of these vulnerable lizards, which remains unclear. To determine how the microbial communities change in crocodile lizards in response to warming, we analyzed the gut microbiota under five temperature conditions (22°C, 24°C, 26°C, 28°C, and 30°C) using 16S rRNA high-throughput sequencing. Results showed that the dominant phyla, Proteobacteria and Bacteroidetes, in gut microbiota were not significantly affected by temperature variations, but increasing temperature altered the structure and increased the community richness of the gut microbiota. In addition, warming changed the abundance of Pseudomonas aeruginosa and Actinobacteria, which may have negative effects on the physiological health of the crocodile lizards. Functional prediction analysis demonstrated that the functional pathways enriched in crocodile lizards were mainly related to metabolism, with no significant differences observed in these pathways at KEGG pathway level 1 after warming. These results provide valuable insights into the ecological adaptations and regulatory mechanisms employed by crocodile lizards in response to warming, which may be of benefit for their conservation.

2.
Front Microbiol ; 13: 897923, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783386

RESUMEN

Captive animals and wild animals may exhibit different characteristics due to the heterogeneity of their living environments. The gut microbiota play an important role in the digestion and absorption, energy metabolism, immune regulation, and physiological health of the host. However, information about the gut microbiota of captive and wild Gekko gecko is currently limited. To determine the difference in gut microbiota community composition, diversity, and structure between captive and wild geckos, we used the Illumina miseq platform to conduct high-throughput sequencing and bioinformatics analysis of the v3-v4 hypervariable region of 16S rRNA in 54 gecko samples. Our results showed that Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria were the dominant gut microbiota phyla of the gecko. The dominant genera comprised mainly Pseudomonas, Burkholderia-caballeronia-paraburkholderia, Ralstonia, Romboutsia, and Bacteroides. Captive geckos had significantly higher alpha diversity and potential pathogenic bacteria than wild populations. Moreover, significant differences in beta diversity of gut microbiota were observed between two populations. Functional prediction analysis showed that the relative abundance of functional pathways of wild geckos was more higher in metabolism, genetic information processing and organismal system function than those in captive geckos. Total length significantly affected gut microbial community (R2 = 0.4527, p = 0.001) and explained 10.45% of the total variation for gut microbial community variance between two groups. These results may be related to differences in diet and living environment between two populations, suggesting that the management of captive populations should mimic wild environments to the greatest extent possible to reduce the impact on their gut microbiota.

3.
Chemosphere ; 251: 126415, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32169698

RESUMEN

In 1976, a tailing dam collapse accident at the Xingping Lead-Zinc Mine in Guangxi Province, China, led to the spillage of mining wastewater and sludge into downstream agricultural lands in Side Village. Heavy metal concentrations, soil pollution and soil enzyme activity were analysed to understand the pollution characteristics of the agricultural lands along the Side stream by this accident. The tailing soil (TS), natural forest soil without spill contamination (NFS) and four representative agricultural soils were selected. The four agricultural soil sites located at the entrance of the stream to the agricultural soil (EnS), the upstream region (US), the middle stream (MS) and at the exit of the stream (ExS) from the village, respectively. The results showed that the soil pH values and heavy metal concentrations were in the order of tailing soil TS > ExS > MS > US > EnS > NFS. The concentration of Pb ranked highest among the analysed elements followed by Zn, Cd, Mn and Cu. The concentrations of Pb, Zn, Cd Mn and Cu 10530.41, 1708.58, 8.32, 885.61 and 104.51 mg kg-1, respectively. Soil pollution assessments by single pollution index, synthesis pollution index and individual/comprehensive potential ecological risk analysis explicated all the soils reached the heavily polluted level and presented extremely high ecological risk grades. Pb, Zn and Cd were the dominant pollutants. The soil enzyme activities of invertase, protease and urease exhibited the opposite distribution pattern as those of the heavy metal concentrations, while the inversely results were observed for the activity of catalase.


Asunto(s)
Monitoreo del Ambiente , Metales Pesados/análisis , Contaminantes del Suelo/análisis , Agricultura , China , Contaminación Ambiental/análisis , Plomo/análisis , Minería , Medición de Riesgo , Suelo/química , Zinc/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA