Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 61(16): e202117368, 2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35037708

RESUMEN

Compounds bearing aliphatic amines can be emissive under appropriate conditions. However, their ionized counterparts, namely, quaternary ammonium salts (QASs), which are widely used as phase-transfer catalysts, ionic liquids, disinfectants, and surfactants, are known as luminescence quenchers and considered nonemissive. Herein, unprecedented intrinsic fluorescence/phosphorescence dual emissions from various QASs are reported, which can be finely regulated by changing the excitation wavelength, alkyl chain length, counterion, and mechanical stimuli. The bright photoluminescence along with distinct afterglow and tunable multicolor emissions enables the application of QAS solids in advanced multimode anticounterfeiting. This finding refreshes the understanding of QASs and may inspire emerging applications based on the utilization of the intrinsic luminescences of QASs. Furthermore, it opens opportunities for the investigation of QAS-related processes and functions via a photophysical approach and affords strong implications for the fabrication of novel nonconventional luminophores.

2.
Chem Soc Rev ; 50(22): 12616-12655, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34610056

RESUMEN

Nonconventional luminophores devoid of remarkable conjugates have attracted considerable attention due to their unique luminescence behaviors, updated luminescence mechanism of organics and promising applications in optoelectronic, biological and medical fields. Unlike classic luminogens consisting of molecular segments with greatly extended electron delocalization, these unorthodox luminophores generally possess nonconjugated structures based on subgroups such as ether (-O-), hydroxyl (-OH), halogens, carbonyl (CO), carboxyl (-COOH), cyano (CN), thioether (-S-), sulfoxide (SO), sulfone (OSO), phosphate, and aliphatic amine, as well as their grouped functionalities like amide, imide, anhydride and ureido. They can exhibit intriguing intrinsic luminescence, generally featuring concentration-enhanced emission, aggregation-induced emission, excitation-dependent luminescence and prevailing phosphorescence. Herein, we review the recent progress in exploring these nonconventional luminophores and discuss the current challenges and future perspectives. Notably, different mechanisms are reviewed and the clustering-triggered emission (CTE) mechanism is highlighted, which emphasizes the clustering of the above mentioned electron rich moieties and consequent electron delocalization along with conformation rigidification. The CTE mechanism seems widely applicable for diversified natural, synthetic and supramolecular systems.

3.
Research (Wash D C) ; 2021: 9757460, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34549184

RESUMEN

Pure organic luminogens with long-persistent luminescence have been extensively studied, on account of their fundamental research significance and diverse utilizations in anticounterfeiting, bioimaging, encryption, organic light-emitting diodes, chemo-sensing, etc. However, time-dependent color-tunable afterglow is rarely reported, especially for single-component materials. In this work, we reported an organic luminogen with time-dependent afterglow, namely, benzoyleneurea (BEU), with multiple persistent room-temperature phosphorescence (p-RTP) and thermally activated delayed fluorescence (TADF) in single crystals. While the lifetime of TADF is relatively short (~1.2 ms), those for p-RTP are as long as around 369~754 ms. The comparable but different decay rates of diversified p-RTP emissions endow BEU crystals with obvious time-dependent afterglow. The existence of multiple emissions can be reasonably illustrated by the clustering-triggered emission (CTE) mechanism. Single-crystal structure illustrates that the combination of benzene ring and nonconventional chromophores of ureide helps facilitate divergent intermolecular interactions, which contribute to the formation of varying emissive species. Moreover, its methyl- and chloro-substituted derivatives show similar multiple p-RTP emissions. However, no time-dependent afterglows are observed in their crystals, due to the highly approaching lifetimes. The afterglow color variation of BEU crystals grants its applications in advanced anticounterfeiting field and information encryption.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA