Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(35): e2410662121, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39163334

RESUMEN

Proteins perform their biological functions through motion. Although high throughput prediction of the three-dimensional static structures of proteins has proved feasible using deep-learning-based methods, predicting the conformational motions remains a challenge. Purely data-driven machine learning methods encounter difficulty for addressing such motions because available laboratory data on conformational motions are still limited. In this work, we develop a method for generating protein allosteric motions by integrating physical energy landscape information into deep-learning-based methods. We show that local energetic frustration, which represents a quantification of the local features of the energy landscape governing protein allosteric dynamics, can be utilized to empower AlphaFold2 (AF2) to predict protein conformational motions. Starting from ground state static structures, this integrative method generates alternative structures as well as pathways of protein conformational motions, using a progressive enhancement of the energetic frustration features in the input multiple sequence alignment sequences. For a model protein adenylate kinase, we show that the generated conformational motions are consistent with available experimental and molecular dynamics simulation data. Applying the method to another two proteins KaiB and ribose-binding protein, which involve large-amplitude conformational changes, can also successfully generate the alternative conformations. We also show how to extract overall features of the AF2 energy landscape topography, which has been considered by many to be black box. Incorporating physical knowledge into deep-learning-based structure prediction algorithms provides a useful strategy to address the challenges of dynamic structure prediction of allosteric proteins.


Asunto(s)
Simulación de Dinámica Molecular , Conformación Proteica , Proteínas/química , Adenilato Quinasa/química , Adenilato Quinasa/metabolismo , Regulación Alostérica , Aprendizaje Profundo
2.
Soft Matter ; 19(41): 7944-7954, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37815389

RESUMEN

Intrinsically disordered proteins (IDPs) often undergo liquid-liquid phase separation (LLPS) and form membraneless organelles or protein condensates. One of the core problems is how do electrostatic repulsion and hydrophobic interactions in peptides regulate the phase separation process? To answer this question, this study uses random peptides composed of positively charged arginine (Arg, R) and hydrophobic isoleucine (Ile, I) as the model systems, and conduct large-scale simulations using all atom and coarse-grained model multi-scale simulation methods. In this article, we investigate the phase separation of different sequences using a coarse-grained model. It is found that the stronger the electrostatic repulsion in the system, the more extended the single-chain structure, and the more likely the system forms a low-density homogeneous phase. In contrast, the stronger the hydrophobic effect of the system, the more compact the single-chain structure, the easier phase separation, and the higher the critical temperature of phase separation. Overall, by taking the random polypeptides composed of two types of amino acid residues as model systems, this study discusses the relationship between the protein sequence and phase behaviour, and provides theoretical insights into the interactions within or between proteins. It is expected to provide essential physical information for the sequence design of functional IDPs, as well as data to support the diagnosis and treatment of the LLPS-associated diseases.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Péptidos , Simulación por Computador , Temperatura , Interacciones Hidrofóbicas e Hidrofílicas , Transición de Fase
3.
Mol Biol Evol ; 39(10)2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36108094

RESUMEN

The recent development of artificial intelligence provides us with new and powerful tools for studying the mysterious relationship between organism evolution and protein evolution. In this work, based on the AlphaFold Protein Structure Database (AlphaFold DB), we perform comparative analyses of the proteins of different organisms. The statistics of AlphaFold-predicted structures show that, for organisms with higher complexity, their constituent proteins will have larger radii of gyration, higher coil fractions, and slower vibrations, statistically. By conducting normal mode analysis and scaling analyses, we demonstrate that higher organismal complexity correlates with lower fractal dimensions in both the structure and dynamics of the constituent proteins, suggesting that higher functional specialization is associated with higher organismal complexity. We also uncover the topology and sequence bases of these correlations. As the organismal complexity increases, the residue contact networks of the constituent proteins will be more assortative, and these proteins will have a higher degree of hydrophilic-hydrophobic segregation in the sequences. Furthermore, by comparing the statistical structural proximity across the proteomes with the phylogenetic tree of homologous proteins, we show that, statistical structural proximity across the proteomes may indirectly reflect the phylogenetic proximity, indicating a statistical trend of protein evolution in parallel with organism evolution. This study provides new insights into how the diversity in the functionality of proteins increases and how the dimensionality of the manifold of protein dynamics reduces during evolution, contributing to the understanding of the origin and evolution of lives.


Asunto(s)
Inteligencia Artificial , Proteoma , Bases de Datos de Proteínas , Filogenia , Proteoma/genética
4.
Phys Rev Lett ; 127(9): 098103, 2021 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-34506164

RESUMEN

The genotype-phenotype mapping of proteins is a fundamental question in structural biology. In this Letter, with the analysis of a large dataset of proteins from hundreds of protein families, we quantitatively demonstrate the correlations between the noise-induced protein dynamics and mutation-induced variations of native structures, indicating the dynamics-evolution correspondence of proteins. Based on the investigations of the linear responses of native proteins, the origin of such a correspondence is elucidated. It is essential that the noise- and mutation-induced deformations of the proteins are restricted on a common low-dimensional subspace, as confirmed from the data. These results suggest an evolutionary mechanism of the proteins gaining both dynamical flexibility and evolutionary structural variability.


Asunto(s)
Modelos Químicos , Proteínas/química , Proteínas/genética , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/genética , Evolución Molecular , Estudios de Asociación Genética , Mutación , Conformación Proteica
5.
Nat Commun ; 12(1): 1147, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33608519

RESUMEN

Within a short period of time, COVID-19 grew into a world-wide pandemic. Transmission by pre-symptomatic and asymptomatic viral carriers rendered intervention and containment of the disease extremely challenging. Based on reported infection case studies, we construct an epidemiological model that focuses on transmission around the symptom onset. The model is calibrated against incubation period and pairwise transmission statistics during the initial outbreaks of the pandemic outside Wuhan with minimal non-pharmaceutical interventions. Mathematical treatment of the model yields explicit expressions for the size of latent and pre-symptomatic subpopulations during the exponential growth phase, with the local epidemic growth rate as input. We then explore reduction of the basic reproduction number R0 through specific transmission control measures such as contact tracing, testing, social distancing, wearing masks and sheltering in place. When these measures are implemented in combination, their effects on R0 multiply. We also compare our model behaviour to the first wave of the COVID-19 spreading in various affected regions and highlight generic and less generic features of the pandemic development.


Asunto(s)
COVID-19/prevención & control , COVID-19/transmisión , Control de Enfermedades Transmisibles/métodos , Modelos Teóricos , Pandemias/prevención & control , Número Básico de Reproducción , Trazado de Contacto , Humanos , Funciones de Verosimilitud , Máscaras , Distanciamiento Físico , Cuarentena
6.
PLoS Comput Biol ; 16(2): e1007670, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32053592

RESUMEN

Proteins in cellular environments are highly susceptible. Local perturbations to any residue can be sensed by other spatially distal residues in the protein molecule, showing long-range correlations in the native dynamics of proteins. The long-range correlations of proteins contribute to many biological processes such as allostery, catalysis, and transportation. Revealing the structural origin of such long-range correlations is of great significance in understanding the design principle of biologically functional proteins. In this work, based on a large set of globular proteins determined by X-ray crystallography, by conducting normal mode analysis with the elastic network models, we demonstrate that such long-range correlations are encoded in the native topology of the proteins. To understand how native topology defines the structure and the dynamics of the proteins, we conduct scaling analysis on the size dependence of the slowest vibration mode, average path length, and modularity. Our results quantitatively describe how native proteins balance between order and disorder, showing both dense packing and fractal topology. It is suggested that the balance between stability and flexibility acts as an evolutionary constraint for proteins at different sizes. Overall, our result not only gives a new perspective bridging the protein structure and its dynamics but also reveals a universal principle in the evolution of proteins at all different sizes.


Asunto(s)
Biología Computacional/métodos , Conformación Proteica , Proteínas/química , Algoritmos , Sitio Alostérico , Catálisis , Simulación por Computador , Cristalografía por Rayos X , Bases de Datos de Proteínas , Elasticidad , Fractales , Proteínas HSP90 de Choque Térmico/química , Humanos , Imagenología Tridimensional , Ligandos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Distribución Normal , Mapeo de Interacción de Proteínas , Relación Estructura-Actividad
7.
Phys Rev Lett ; 118(8): 088102, 2017 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-28282168

RESUMEN

Based on protein structural ensembles determined by nuclear magnetic resonance, we study the position fluctuations of residues by calculating distance-dependent correlations and conducting finite-size scaling analysis. The fluctuations exhibit high susceptibility and long-range correlations up to the protein sizes. The scaling relations between the correlations or susceptibility and protein sizes resemble those in other physical and biological systems near their critical points. These results indicate that, at the native states, motions of each residue are felt by every other one in the protein. We also find that proteins with larger susceptibility are more frequently observed in nature. Overall, our results suggest that the protein's native state is critical.


Asunto(s)
Conformación Proteica , Proteínas/química , Modelos Moleculares , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA