Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater ; 35(1): e2201384, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36063023

RESUMEN

The realization of practical nonaqueous lithium-air batteries (LABs) calls for novel strategies to address their numerous theoretical and technical challenges. LiOH formation/decomposition has recently been proposed as a promising alternative route to cycling LABs via Li2 O2 . Herein, the progress in developing LiOH-based nonaqueous LABs is reviewed. Various catalytic systems, either soluble or solid-state, that can activate a LiOH-based electrochemistry are compared in detail, with emphasis in providing an updated understanding of the oxygen reduction and evolution reactions in nonaqueous media. We identify the key factors that can switch the cell chemistry between Li2 O2  and LiOH and highlight the debate around these routes, as well as rationalize potential causes for these opposing opinions. The identities of the reaction intermediates, activity of redox mediators and additives, location of reaction interfaces, causes of parasitic reactions, as well as the effect of CO2  on the LiOH electrochemistry, all play a critical role in altering the relative rates of a series of interconnected reactions and all warrant further investigation.

2.
J Phys Chem Lett ; 13(2): 471-478, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-34995456

RESUMEN

Investigation of LiOH decomposition in nonaqueous electrolytes not only expands the fundamental understanding of four-electron oxygen evolution reactions in aprotic media but also is crucial to the development of high-performance lithium-air batteries involving the formation/decomposition of LiOH. In this work, we have shown that the decomposition of LiOH by ruthenium metal catalysts in a wet DMSO electrolyte occurs at the catalyst-electrolyte interface, initiated via a potential-triggered dissolution/reprecipitation process. The in situ UV-vis methodology devised herein provides direct experimental evidence that the hydroxyl radical is a common reaction intermediate formed in several nonaqueous electrolytes; this method is applicable to study other battery systems. Our results highlight that the reactivity of the hydroxyl radical toward nonaqueous electrolyte represents a major factor limiting O2 evolution during LiOH decomposition. Coupling catalysts restraining hydroxyl reactivity with electrolytes more resistant to hydroxyl radical attack could help improve the reversibility of this reaction.

3.
Adv Sci (Weinh) ; 9(4): e2103760, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34894094

RESUMEN

Realizing an energy-dense, highly rechargeable nonaqueous lithium-oxygen battery in ambient air remains a big challenge because the active materials of the typical high-capacity cathode (Li2 O2 ) and anode (Li metal) are unstable in air. Herein, a novel lithium-oxygen full cell coupling a lithium anode protected by a composite layer of polyethylene oxide (PEO)/lithium aluminum titanium phosphate (LATP)/wax to a LiOH-based cathode is constructed. The protected lithium is stable in air and water, and permits reversible, dendrite-free lithium stripping/plating in a wet nonaqueous electrolyte under ambient air. The LiOH-based full cell reaction is immune to moisture (up to 99% humidity) in air and exhibits a much better resistance to CO2 contamination than Li2 O2 , resulting in a more consistent electrochemistry in the long term. The current approach of coupling a protected lithium anode with a LiOH-based cathode holds promise for developing a long-life, high-energy lithium-air battery capable of operating in the ambient atmosphere.

4.
Environ Sci Technol ; 54(11): 6908-6918, 2020 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-32352763

RESUMEN

In this study, we present a holistic analysis of the stock and emissions of poly- and perfluoroalkyl substances (PFAS) in California carpet in 2000-2030. Our high estimate is that, in 2017, the total PFAS accumulated in in-use carpet stock and landfilled carpet are ∼60 and ∼120 tonnes, respectively, and the resultant PFAS emissions are ∼800 and ∼100 kg, respectively. Among the three subclasses (side-chain polymers, PFAA, and nonpolymeric precursors), side-chain polymers dominate the in-use stock and landfill accumulation, while nonpolymeric precursors dominate the resultant emissions. Our low estimate is typically 8-15% of the high estimate and follows similar trends and subclass breakdowns as the high estimate. California's new Carpet Stewardship Regulations (24% recycling of end-of-life carpet) will reduce the landfilled PFAS by 6% (7 tonnes) at the cost of increasing the in-use stock by 2% (2 tonnes) in 2030. Aggressive PFAS phase-out by carpet manufacturers (i.e., reduce PFAS use by 15% annually starting 2020) could reduce the in-use PFAS stock by 50% by 2030, but its impact on the total landfilled PFAS is limited. The shift toward short-chain PFAS will also significantly reduce the in-use stock of long-chain PFAS in carpet by 2030 (only 25% of the total PFAS will be long-chain). Among the data gaps identified, a key one is the current area-based PFAS emission reporting (i.e., g PFAS emitted/area carpet/time), which leads to the counterintuitive result that reducing the PFAS use in carpet production has no impact on the PFAS emissions from in-use stock and landfills. Future technical studies should either confirm this or consider a mass-based unit (e.g., g PFAS emitted/g PFAS used/time) for better integration into regional substance flow analysis. Other noticeable data gaps include the lack of time-series data on emissions from the in-use stock and on leaching of side-chain polymers from landfills.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , California , Pisos y Cubiertas de Piso , Fluorocarburos/análisis , Instalaciones de Eliminación de Residuos , Contaminantes Químicos del Agua/análisis
5.
ACS Appl Mater Interfaces ; 11(31): 27813-27822, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31291080

RESUMEN

The Mn-based mixed polyanion is expected to be a promising cathode material for sodium-ion batteries applied to large-scale smart grid energy storage systems due to its stable three-dimensional crystal structure, low cost, and high energy density. Herein, a novel carbon nanotube (CNT)-modified mixed-polyanion material (Na4Mn2Co(PO4)2P2O7) with a high voltage of 3.86 V is synthesized by a facile spray-drying method. The well-designed Na4Mn2Co(PO4)2P2O7/C-CNTs microsphere has excellent electronic and ionic conductivity by virtue of the carbon nanotube conductive skeleton. The as-prepared Na4Mn2Co(PO4)2P2O7/C-CNTs composite exhibits a reversible initial discharge capacity of 96.1 mA h g-1 and an energy density of 371 Wh kg-1 at 0.1 C. Furthermore, Na4Mn2Co(PO4)2P2O7/C-CNTs and hard carbon are assembled into a full battery, which delivers an initial discharge capacity of 88.8 mA h g-1, a working voltage of 3.85 V, and a promising energy density of 249.9 Wh kg-1 at 0.1 C. Therefore, the outstanding performance makes the Na4Mn2Co(PO4)2P2O7/C-CNTs material a potential candidate for large-scale applications of sodium-ion batteries.

6.
Environ Sci Technol ; 52(6): 3706-3715, 2018 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-29436224

RESUMEN

Bisphenol A (BPA), a synthetic organic chemical, is creating a new category of ecological and human health challenges due to unintended leakage. Effectively managing the use and leakage of BPA can benefit from an understanding of the anthropogenic BPA cycles (i.e., the size of BPA flows and stocks). In this work, we provide a dynamic analysis of the anthropogenic BPA cycles in China for 2000-2014. We find that China's BPA consumption has increased 10-fold since 2000, to ∼3 million tonnes/year. With the increasing consumption, China's in-use BPA stock has increased 500-fold to 14.0 million tonnes (i.e., 10.2 kg BPA/capita). It is unclear whether a saturation point has been reached, but in 2004-2014, China's in-use BPA stock has been increasing by 0.8 kg BPA/capita annually. Electronic products are the biggest contributor, responsible for roughly one-third of China's in-use BPA stock. Optical media (DVD/VCD/CDs) is the largest contributor to China's current End-of-Life (EoL) BPA flow, totaling 0.9 million tonnes/year. However, the EoL BPA flow due to e-waste will increase quickly, and will soon become the largest EoL BPA flow. The changing quantities and sources of EoL BPA flows may require a shift in the macroscopic BPA management strategies.


Asunto(s)
Compuestos de Bencidrilo , Fenoles , China , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA