Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.861
Filtrar
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 324: 124993, 2025 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-39159512

RESUMEN

BODIPY-based chemosensors are widely used owing to merits like good selectivity, high fluorescence quantum yield, and excellent optical stability. As such, a pH-switchable hydrophilic fluorescent probe, BODIPY-PY-(SO3Na)2, was developed for detection of Fe3+ ion in aqueous solutions. BODIPY-PY-(SO3Na)2 revealed strong fluorescence intensity and was responsive to pH value in the range of 6.59-1.96. Additionally, BODIPY-PY-(SO3Na)2 showed good selectivity and sensitivity towards Fe3+. A good linear relationship for Fe3+ detection was obtained from 0.0 µM to 50.0 µM with low detecting limit of 6.34 nM at pH 6.59 and 2.36 nM at pH 4.32, respectively. The response to pH and detection of Fe3+ induced obvious multicolor changes. BODIPY-PY-(SO3Na)2 can also be utilized to quantitatively detect Fe3+ in real water sample. Different mechanisms of Fe3+ detection at investigated pH values were unraveled through relativistic density functional theory (DFT) calculations in BODIPY-PY-(SO3Na)2 and experiments of coexisting cations, anions and molecules. These results enabled us to gain a deeper understanding of the interactions between BODIPY-PY-(SO3Na)2 and Fe3+ and provide valuable fundamental information for design of efficient multicolor chemosensors for Fe3+ as well.

2.
Mater Horiz ; 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39233605

RESUMEN

Nowadays, thousands of energetic materials have been synthesized, but only a few compounds meet all the high standards of detonation performance comparable to that of the widely used military explosive RDX, thermal stability comparable to that of the most widely used heat-resistant explosive HNS, and impact sensitivity comparable to that of the traditional explosive TNT. Also, as a goal, a novel and unexpected one-step method for constructing the furoxan-bridged energetic compound 3,4-bis(3,8-dinitropyrazolo[5,1-c][1,2,4]triazin-4-amino-7-yl)-1,2,5-oxadiazole 2-oxide (OTF) has been achieved under the conventional TFA/100% HNO3 nitration reaction system from the acetic acid intermediate. In this work, OTF with a high density of 1.90 g cm-3, the highest decomposition temperature of 310 °C (onset) among furoxan-based high explosives to date, superior detonation velocity (DV: 9109 m s-1), and low sensitivity (IS: 25 J) is reported. This work is a giant step forward in the development of advanced high-energy heat-resistant explosives and could improve future possibilities for the design of furoxan-based energetic materials.

3.
J Intensive Care Med ; : 8850666241281060, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39234770

RESUMEN

BACKGROUND: To develop and validate a mortality prediction model for patients with sepsis-associated Acute Respiratory Distress Syndrome (ARDS). METHODS: This retrospective cohort study included 2466 patients diagnosed with sepsis and ARDS within 24 h of ICU admission. Demographic, clinical, and laboratory parameters were extracted from Medical Information Mart for Intensive Care III (MIMIC-III) database. Feature selection was performed using the Boruta algorithm, followed by the construction of seven ML models: logistic regression, Naive Bayes, k-nearest neighbor, support vector machine, decision tree, Random Forest, and extreme gradient boosting. Model performance was evaluated using the area under the receiver operating characteristic curve, accuracy, sensitivity, specificity, positive predictive value, and negative predictive value. RESULTS: The study identified 24 variables significantly associated with mortality. The optimal ML model, a Random Forest model, demonstrated an AUC of 0.8015 in the test set, with high accuracy and specificity. The model highlighted the importance of blood urea nitrogen, age, urine output, Simplified Acute Physiology Score II, and albumin levels in predicting mortality. CONCLUSIONS: The model's superior predictive performance underscores the potential for integrating advanced analytics into clinical decision-making processes, potentially improving patient outcomes and resource allocation in critical care settings.

4.
Discov Oncol ; 15(1): 414, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39240463

RESUMEN

Glioma is the most aggressive intracranial malignancy and is associated with poor survival rates and limited quality of life, impairing neuropsychological function and cognitive competence in survivors. The Proteasome Subunit Alpha Type-5 (PSMA5) is a multicatalytic proteinase complex that has been linked with tumor progression but is rarely reported in glioma. This study investigates the expression pattern, prognostic characteristics, and potential biological functions of PSMA5 in glioma. PSMA5 was significantly overexpressed in 28 types of cancer when compared to normal tissue. Furthermore, elevated levels of PSMA5 were observed in patients with wild-type isocitrate dehydrogenase 1 and exhibited a positive correlation with tumor grade. It was also found to be a standalone predictor of outcomes in glioma patients. Additionally, inhibiting PSMA5-induced cell cycle arrest may provide a therapeutic option for glioma.

5.
Sci Rep ; 14(1): 20830, 2024 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242673

RESUMEN

The adverse pregnancy outcomes, including recurrent spontaneous abortion (RSA), are strongly correlated with water-soluble vitamins, but how to predict RSA occurrence using them remains unsatisfactory. This study aims to investigate the possibility of predicting RSA based on the baseline levels of water-soluble vitamins tested by ultra-liquid chromatography-tandem mass spectrometry. A total of 918 pregnant women was consecutively enrolled in this cross-sectional study. According to the miscarriage numbers, they were divided into normal first pregnancy (NFP, n = 608), once spontaneous abortion (OSA, n = 167), and continuous spontaneous abortion (CSA, n = 143) groups. The Cox proportional-hazards regression model was employed to establish a risk model for predicting RSA. The RSA occurrence was 6.54% in overall pregnant women, with a prevalence of 12.57% in the OSA group and 27.27% in the CSA group. Significant differences were observed in baseline deficiencies of vitamin B3, B5, B6, and B9 among NFP, OSA, and CSA groups (χ2 = 12.191 ~ 37.561, all P < 0.001). Among these vitamins, B9 (HR = 0.89 and 0.88, all P < 0.001) and B6 (HR = 0.83 and 0.78, all P < 0.05) were identified as independent factors in both the OSA and CSA groups; whereas B5 was identified as an additional independent factor only in the CSA group (HR = 0.93, P = 0.005). The Cox proportional-hazards model established using these three vitamins exhibited poor or satisfactory predictive performance in the OSA (Sen = 95.2%, Spe = 39.0%) and CSA (Sen = 92.3%, Spe = 60.6%) groups, respectively. However, B5, B6, and B9 compensatory levels were not associated with RSA occurrence (all P > 0.05). Our study presents a highly sensitive model based on mass spectrometry assay of baseline levels in B vitamins to predict the RSA occurrence as possible.


Asunto(s)
Aborto Habitual , Vitaminas , Femenino , Humanos , Adulto , Aborto Habitual/etiología , Embarazo , Estudios Transversales , Modelos de Riesgos Proporcionales , Espectrometría de Masas en Tándem/métodos , Solubilidad , Factores de Riesgo , Agua/química
6.
Commun Biol ; 7(1): 1078, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39223249

RESUMEN

Macrophages serve as the primary immune cell population and assume a pivotal role in the immune response within the damaged cochleae. Yet, the origin and role of macrophages in response to noise exposure remain controversial. Here, we take advantage of Ccr2RFP/+ Cx3cr1GFP/+ dual-reporter mice to identify the infiltrated and tissue-resident macrophages. After noise exposure, we reveal that activated resident macrophages change in morphology, increase in abundance, and migrate to the region of hair cells, leading to the loss of outer hair cells and the damage of ribbon synapses. Meanwhile, peripheral monocytes are not implicated in the noise-induced hair cell insults. These noise-induced activities of macrophages are abolished by inhibiting TLR4 signaling, resulting in alleviated insults of hair cells and partial recovery of hearing. Our findings indicate cochlear resident macrophages are pro-inflammatory and detrimental players in acoustic trauma and introduce a potential therapeutic target in noise-induced hearing loss.


Asunto(s)
Pérdida Auditiva Provocada por Ruido , Macrófagos , Animales , Pérdida Auditiva Provocada por Ruido/patología , Pérdida Auditiva Provocada por Ruido/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Células Ciliadas Auditivas/patología , Células Ciliadas Auditivas/metabolismo , Ruido/efectos adversos , Activación de Macrófagos , Cóclea/patología , Cóclea/inmunología , Cóclea/metabolismo , Masculino , Ratones Transgénicos
7.
Nutrients ; 16(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39275244

RESUMEN

The association of alcohol intake with kidney stone disease (KSD) is not clear based on current clinical evidence. We examined the National Health and Nutrition Examination Survey (NHANES) 2007-2018 and used logistic regression analyses to determine the independent association between alcohol intake and prevalent KSD. In total, 29,684 participants were eligible for the final analysis, including 2840 prevalent stone formers (SFs). The mean alcohol intake was 37.0 ± 2.4 g/day among SFs compared to 42.7 ± 0.9 among non-SFs (p = 0.04). Beer [odds ratio (OR) = 0.76, 95% CI: 0.61-0.94, p = 0.01] and wine (OR = 0.75, 95% CI: 0.59-0.96, p = 0.03) intakes were strongly associated with lower odds of prevalent KSD, while liquor intake had no association. Furthermore, the effects of beer and wine intakes on stone formation were dose-dependent. The OR for comparing participants drinking 1-14 g/day of beer to non-drinkers was 1.41 (95%CI: 0.97-2.05, p = 0.07), that of >14-≤28 g/day of beer to non-drinkers was 0.65 (95% CI: 0.42-1.00, p = 0.05), that of >28-≤56 g/day of beer to non-drinkers was 0.60 (95% CI: 0.39-0.93, p = 0.02), and that of >56 g/day of beer to non-drinkers was 0.34 (95% CI: 0.20-0.57, p < 0.001). Interestingly, the effect of wine intake was only significant among participants drinking moderate amounts (>14-28 g/day), with an OR of 0.54 (95% CI: 0.36-0.81, p = 0.003) compared to non-drinkers, but this effect was lost when comparing low-level (1-14 g/day) and heavy (>28 g/day) wine drinkers to non-drinkers. These effects were consistent in spline models. This study suggests that both moderate to heavy beer intake and moderate wine intake are associated with a reduced risk of KSD. Future prospective studies are needed to clarify the causal relationship.


Asunto(s)
Consumo de Bebidas Alcohólicas , Cerveza , Cálculos Renales , Encuestas Nutricionales , Vino , Humanos , Cálculos Renales/epidemiología , Cálculos Renales/etiología , Masculino , Femenino , Consumo de Bebidas Alcohólicas/epidemiología , Adulto , Persona de Mediana Edad , Cerveza/estadística & datos numéricos , Prevalencia , Vino/estadística & datos numéricos , Estados Unidos/epidemiología , Estudios Transversales , Factores de Riesgo , Adulto Joven , Oportunidad Relativa , Modelos Logísticos
8.
Pestic Biochem Physiol ; 204: 106100, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39277408

RESUMEN

Synthetic pyrethroids are widely used insecticides which may cause chronic diseases in non-target organisms upon long-term exposure. Microbial degradation offers a reliable method to remove them from the environment. This study focused on Brevibacillus parabrevis BCP-09 and its enzymes for degrading pyrethroids. The predicted deltamethrin-degrading genes phnA and mhpC were used to construct recombinant plasmids. These plasmids, introduced into Escherichia coli BL21(DE3) cells and induced with L-arabinose. The results indicated that the intracellular crude enzyme efficiently degraded deltamethrin by 98.8 %, ß-cypermethrin by 94.84 %, and cyfluthrin by 73.52 % within 24 h. The hydrolytic enzyme MhpC possesses a catalytic triad Ser/His/Asp and a typical "Gly-X-Ser-X-Gly" conservative sequence of the esterase family. Co-cultivation of induced E. coli PhnA and E. coli MhpC resulted in degradation rates of 41.44 ± 3.55 % and 60.30 ± 4.55 %, respectively, for deltamethrin after 7 d. This study states that the degrading enzymes from B. parabrevis BCP-09 are an effective method for the degradation of pyrethroids, providing available enzyme resources for food safety and environmental protection.


Asunto(s)
Brevibacillus , Nitrilos , Piretrinas , Piretrinas/metabolismo , Brevibacillus/metabolismo , Brevibacillus/genética , Nitrilos/metabolismo , Insecticidas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrolasas/metabolismo , Hidrolasas/genética , Biodegradación Ambiental , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Plásmidos/genética
9.
Gene ; : 148939, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39278373

RESUMEN

BACKGROUND AND OBJECTIVES: Genome-wide association studies (GWASs) have identified numerous candidate genes for human brain-imaging phenotypes; however, the biological relevance of many of these genes remains unconfirmed. This study aimed to investigate the causal relationships among tescalcin (TESC) (a GWAS-indicated gene), hippocampal volume, Alzheimer's disease (AD), and the underlying biological mechanisms. METHODS: Human transcriptional data were analyzed to confirm relative TESC expression in the hippocampus. In cell experiments, RNA-seq analysis was used to identify the potential biological pathways for TESC overexpression, and immunofluorescence imaging and cell viability assays were used to evaluate the effect of TESC overexpression on neuronal structure and survival. In animal experiments, the effects of TESC overexpression on hippocampal volume and cognitive function in normal mice and amyloid-ß (Aß)-induced AD mice were investigated by 9.4 T magnetic resonance imaging and behavioral tests. Underlying mechanisms were further assessed via western blotting and electrophysiological recordings. RESULTS: Human transcriptional data demonstrated that TESC is primarily expressed in the hippocampus and neurons. TESC overexpression enhanced the viability of HT22 cells and reduced Aß-induced cell death. In mouse models, Tesc-overexpressing mice revealed increased hippocampal volume, likely owing to enhanced cell viability and long-term potentiation (LTP), and reducing apoptotic- and oxidation-induced hippocampal damage. TESC overexpression could significantly mitigate Aß-induced hippocampal atrophy and memory impairment, potentially by reducing Aß-induced neuronal apoptosis and LTP weakening. CONCLUSION: This study exemplifies the translation of GWAS findings into actionable biological knowledge and suggests that upregulation of TESC may offer a promising therapeutic strategy for AD.

10.
BMC Pediatr ; 24(1): 577, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39272033

RESUMEN

BACKGROUND: Recently, the C3-epimer of 25-hydroxyvitamin D [C3-epi-25(OH)D] has become a topic of interest among 25-hydroxyvitamin D [25(OH)D] metabolites. Although it can lead to an overestimation of vitamin D storage, its relationship with disease occurrence remains controversial, possibly related to the great extent of tracking of 25(OH)D by C3-epi-25(OH)D over time. This study aimed to investigate the differential performance of C3-epi-25(OH)D3 and its percentage [%C3-epi-25(OH)D3] with respect to 20 common paediatric diseases. METHODS: This study involved 805 healthy children and adolescents and 2962 patients with common paediatric diseases. We investigated sex, age, and seasonal differences in C3-epi-25(OH)D3 and %C3-epi-25(OH)D3 levels; their variations on 20 common paediatric diseases; and their degree of correlation with 25(OH)D3 levels and various diseases. RESULTS: Among the healthy underage participants, C3-epi-25(OH)D3 and %C3-epi-25(OH)D3 changed similarly, with no sex differences. Moreover, their levels were higher in the infant period than in the other periods (t = 5.329-5.833, t = 4.640-5.711, all Padj < 0.001), and in spring and summer than in autumn and winter (t = 3.495-6.061, t = 3.495-5.658, all Padj < 0.01). Under healthy and disease conditions, C3-epi-25(OH)D3 was positively correlated with 25(OH)D3 (ρ = 0.318 ~ 0.678, all P < 0.017), whereas %C3-epi-25(OH)D3 was not, except in patients with nephrotic syndrome (ρ=-0.393, P = 0.001). Before and after adjusting for 25(OH)D3, the relationship of C3-epi-25(OH)D3 with the diseases was notably different. However, it was almost consistent for %C3-epi-25(OH)D3. Our results indicated that %C3-epi-25(OH)D3 was associated with short stature, nephrotic syndrome, lymphocytic leukaemia, rickets, paediatric malnutrition, and hypovitaminosis D (OR = 0.80 ~ 1.21, all P < 0.05). CONCLUSIONS: The %C3-epi-25(OH)D3 can correct the properties of C3-epi-25(OH)D3 to better track 25(OH)D3 and may be more suitable for exploring its pathological relevance. Further detailed studies of each disease should be conducted.


Asunto(s)
Calcifediol , Humanos , Masculino , Femenino , Niño , Estudios de Casos y Controles , Adolescente , Preescolar , Calcifediol/sangre , Lactante , Estaciones del Año , Vitamina D/sangre , Vitamina D/análogos & derivados
11.
Biomed Pharmacother ; 179: 117392, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39232388

RESUMEN

Sensorineural hearing loss is one of the most prevalent sensory deficits. Spiral ganglion neurons (SGNs) exhibit very limited regeneration capacity and their degeneration leads to profound hearing loss. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEV) have been demonstrated to repair tissue damage in various degenerative diseases. However, the effects of MSC-sEV on SGN degeneration remain unclear. In this study, we investigated the efficacy of MSC-sEV for protection against ouabain-induced SGN degeneration. MSC-sEV were derived from rat bone marrow and their components related to neuron growth were determined by proteomic analysis. In primary culture SGNs, MSC-sEV significantly promoted neurite growth and growth cone development. The RNA-Seq analysis of SGNs showed that enriched pathways include neuron development and axon regeneration, consistent with proteomics. In ouabain induced SGN degeneration rat model, MSC-sEV administration via intratympanic injection significantly enhanced SGN survival and mitigated hearing loss. Furthermore, after ouabain treatment, SGNs displayed evident signs of apoptosis, including nuclei condensation and fragmentation, with numerous cells exhibiting TUNEL-positive. However, administration of MSC-sEV effectively decreased the number of TUNEL-positive cells and reduced caspase-3 activation. In conclusion, our findings demonstrate the potential of MSC-sEV in preventing SGN degeneration and promoting neural growth, suggesting intratympanic injection of MSC-sEV is a specific and efficient strategy for neural hearing loss.

12.
Medicine (Baltimore) ; 103(36): e39614, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39252255

RESUMEN

BACKGROUND: The advancement of digital technology, particularly telemedicine, has become crucial in improving healthcare access in rural areas. By integrating cloud computing and mHealth technologies, Internet-based Collaborative Outpatient Clinics offer a promising solution to overcome the limitations of traditional healthcare delivery in underserved communities. METHODS: A trial was conducted in 4 counties of Changzhi City in Shanxi Province, China. The system extended to 495 rural communities and served over 5000 rural residents. Deep learning algorithms were employed to analyze medical data patterns to increase the accuracy of diagnoses and the quality of personalized treatment recommendations. RESULTS: After the implementation of the system, there was a significant improvement in the satisfaction levels of rural residents regarding medical services; the accuracy of medical consultations increased by 30%, and the convenience of medical access improved by 50%. There was also a notable enhancement in overall health management. Satisfaction rates among healthcare professionals and rural inhabitants were over 90% and 85%, respectively, indicating that the system has had a significant positive impact on the quality of health-care services. CONCLUSION: The study confirms the feasibility of implementing telemedicine services in rural areas and offers evidence and an operational framework for promoting innovative healthcare models on a large scale.


Asunto(s)
Internet , Satisfacción del Paciente , Servicios de Salud Rural , Telemedicina , Humanos , China , Servicios de Salud Rural/organización & administración , Masculino , Femenino , Adulto , Persona de Mediana Edad , Accesibilidad a los Servicios de Salud , Atención Ambulatoria/métodos , Atención Ambulatoria/organización & administración , Población Rural , Anciano , Adulto Joven , Adolescente
13.
Heliyon ; 10(16): e36129, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39253113

RESUMEN

Accumulated evidence has supported the probiotic activity of Leuconostoc mesenteroides (L. mesenteroides) which can yield beneficial metabolites via fermentation. Here, bovine milk rich in phenylalanine(PHE) was used as a source for fermentation of L. mesenteroides. The complexes of PHE with bacterial phenylalanine hydroxylase (PheH) at two temperatures were revealed via molecular dynamics simulation. Two carbon hydrogen bonds and a Pi-Alkyl T-shaped interaction were newly formed at an active site of the PheH-PHE complex. The PheH interacted with two different hydrogen atoms in an amine of PHE via conventional hydrogen bonds at 37 °C, a temperature that accelerated the milk fermentation of L. mesenteroides. Twenty-eight metabolites including various neurotransmitters in fermented milk were identified and quantified by liquid chromatography coupled to quadrupole ion trap (Q-Trap) tandem mass spectrometry. Ex ovo injection of milk ferments into the yolk sac of chicken embryos enhanced a rising temperature-induced increase in heartbeats towards the normal resting level. The neurotransmitter-rich milk ferments hold potential for using to adjust energy metabolism, referred from heart rates, during fluctuating temperature conditions.

14.
EJNMMI Res ; 14(1): 78, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210186

RESUMEN

BACKGROUND: Parkinson's disease (PD) is a prevalent neurodegenerative disorder worldwide, diagnosed based on classic symptoms like motor dysfunction and cognitive impairments. With the development of various radioactive ligands, positron emission tomography (PET) imaging combined with specific radiolabelling probes has proven to be effective in aiding clinical PD diagnosis. Among these probes, 2ß-Carbomethoxy-3ß-(4-chlorophenyl)-8-(2-[18F]-fluoroethyl) nortropane ([18F]FECNT) has been utilized as a PET tracer to image dopamine transporter (DAT) integrity in striatal presynaptic dopaminergic terminals. However, the presence of brain-penetrant radioactive metabolites produced by [18F]FECNT may impact the accuracy of PET imaging. In previous research, we developed 2ß-Carbomethoxy-3ß-(4-chlorophenyl)-8-(2-[18F]-fluoroethyl-1,1,2,2-d4) nortropane ([18F]FECNT-d4), a deuterated derivative with enhanced stability in plasma and the striatum, along with a slower washout rate. In this study, we further investigated the potential of [18F]FECNT-d4 to detect dopaminergic neuron degeneration in Parkinson's disease. This involved PET imaging in unilaterally-lesioned PD model rats and in vitro autoradiography conducted on postmortem brain sections. RESULTS: PET images revealed reduced specific uptake in the ipsilateral striatum of rats stereotactically injected with 6-hydroxydopamine hydrochloride (6-OHDA). Compared to the sham group, the ratio of standardized uptake value (SUV) in the ipsilateral to contralateral striatum decreased by 13%, 23%, and 63% in the mild, moderate, and severe lesioned groups, respectively. Dopaminergic denervation observed in PET imaging was further supported by behavioral assessments, immunostaining, and monoamine concentration tests. Moreover, the microPET results exhibited positive correlations with these measurements, except for the apomorphine-induced rotational behavior test, which showed a negative correlation. Additionally, [18F]FECNT-d4 uptake was approximately 40% lower in the postmortem striatal sections of a PD patient compared to a healthy subject. Furthermore, estimated human dosimetry (effective dose equivalent: 5.06 E-03 mSv/MBq), extrapolated from rat biodistribution data, remained below the current Food and Drug Administration limit for radiation exposure. CONCLUSION: Our findings demonstrate that [18F]FECNT-d4 accurately estimates levels of dopaminergic neuron degeneration in the 6-OHDA-induced PD rat model and effectively distinguishes between PD patients and healthy individuals. This highly sensitive and safe PET probe holds promising potential for clinical application in the diagnosis and monitoring of Parkinson's disease.

15.
Nano Lett ; 24(35): 10883-10891, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39172995

RESUMEN

The development of electronic skin (e-skin) emulating the human skin's three essential functions (perception, protection, and thermoregulation) has great potential for human-machine interfaces and intelligent robotics. However, existing studies mainly focus on perception. This study presents a novel, eco-friendly, mechanically robust e-skin replicating human skin's three essential functions. The e-skin is composed of Ti3C2Tx MXene, polypyrrole, and bacterial cellulose nanofibers, where the MXene nanoflakes form the matrix, the bacterial cellulose nanofibers act as the filler, and the polypyrrole serves as a conductive "cross-linker". This design allows customization of the electrical conductivity, microarchitecture, and mechanical properties, integrating sensing (perception), EMI shielding (protection), and thermal management (thermoregulation). The optimal e-skin can effectively sense various motions (including minuscule artery pulses), achieve an EMI shielding efficiency of 63.32 dB at 78 µm thickness, and regulate temperature up to 129 °C in 30 s at 2.4 V, demonstrating its potential for smart robotics in complex scenarios.


Asunto(s)
Conductividad Eléctrica , Polímeros , Dispositivos Electrónicos Vestibles , Humanos , Polímeros/química , Pirroles/química , Nanofibras/química , Celulosa/química , Piel/química , Regulación de la Temperatura Corporal , Titanio/química , Robótica
16.
Int J Mol Sci ; 25(16)2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39201563

RESUMEN

Nitric oxide (NO) has been firmly established as a key signaling molecule in plants, playing a significant role in regulating growth, development and stress responses. Given the imperative of sustainable agriculture and the urgent need to meet the escalating global demand for food, it is imperative to safeguard crop plants from the effects of climate fluctuations. Plants respond to environmental challenges by producing redox molecules, including reactive oxygen species (ROS) and reactive nitrogen species (RNS), which regulate cellular, physiological, and molecular processes. Nitric oxide (NO) plays a crucial role in plant stress tolerance, acting as a signaling molecule or free radical. NO is involved in various developmental processes in plants through diverse mechanisms. Exogenous NO supplementation can alleviate the toxicity of abiotic stresses and enhance plant resistance. In this review we summarize the studies regarding the production of NO in peroxisomes, and how its molecule and its derived products, (ONOO-) and S-nitrosoglutathione (GSNO) affect ROS metabolism in peroxisomes. Peroxisomal antioxidant enzymes including catalase (CAT), are key targets of NO-mediated post-translational modification (PTM) highlighting the dynamic metabolism of ROS and RNS in peroxisomes.


Asunto(s)
Óxido Nítrico , Peroxisomas , Procesamiento Proteico-Postraduccional , Especies de Nitrógeno Reactivo , Especies Reactivas de Oxígeno , Peroxisomas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Óxido Nítrico/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Plantas/metabolismo
17.
CNS Neurosci Ther ; 30(8): e14906, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39118226

RESUMEN

AIMS: Schizophrenia is characterized by alterations in resting-state spontaneous brain activity; however, it remains uncertain whether variations at diverse spatial scales are capable of effectively distinguishing patients from healthy controls. Additionally, the genetic underpinnings of these alterations remain poorly elucidated. We aimed to address these questions in this study to gain better understanding of brain alterations and their underlying genetic factors in schizophrenia. METHODS: A cohort of 103 individuals with diagnosed schizophrenia and 110 healthy controls underwent resting-state functional MRI scans. Spontaneous brain activity was assessed using the regional homogeneity (ReHo) metric at four spatial scales: voxel-level (Scale 1) and regional-level (Scales 2-4: 272, 53, 17 regions, respectively). For each spatial scale, multivariate pattern analysis was performed to classify schizophrenia patients from healthy controls, and a transcriptome-neuroimaging association analysis was performed to establish connections between gene expression data and ReHo alterations in schizophrenia. RESULTS: The ReHo metrics at all spatial scales effectively discriminated schizophrenia from healthy controls. Scale 2 showed the highest classification accuracy at 84.6%, followed by Scale 1 (83.1%) and Scale 3 (78.5%), while Scale 4 exhibited the lowest accuracy (74.2%). Furthermore, the transcriptome-neuroimaging association analysis showed that there were not only shared but also unique enriched biological processes across the four spatial scales. These related biological processes were mainly linked to immune responses, inflammation, synaptic signaling, ion channels, cellular development, myelination, and transporter activity. CONCLUSIONS: This study highlights the potential of multi-scale ReHo as a valuable neuroimaging biomarker in the diagnosis of schizophrenia. By elucidating the complex molecular basis underlying the ReHo alterations of this disorder, this study not only enhances our understanding of its pathophysiology, but also pave the way for future advancements in genetic diagnosis and treatment of schizophrenia.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Neuroimagen , Esquizofrenia , Transcriptoma , Humanos , Esquizofrenia/genética , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/metabolismo , Femenino , Masculino , Adulto , Imagen por Resonancia Magnética/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Neuroimagen/métodos , Análisis Multivariante , Adulto Joven , Persona de Mediana Edad , Estudios de Cohortes , Biomarcadores/metabolismo
18.
Sci Total Environ ; 950: 175053, 2024 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-39097008

RESUMEN

Mining activities disrupt the natural oxidative balance underground, increasing the oxidation of metal sulfides like pyrite. This process leads to the formation of highly acidic mine drainage (AMD) with elevated concentrations of iron (Fe) and sulfate (SO42-). However, generic plugging and backfilling methods, when applied without considering the specific post-mining oxidative environments of different metal mines, often yields minimal results. To clarify the distribution of the underground redox environment after mining of a metal mine in Dexing, China, fifteen water samples from flood and dry periods, as well as fifteen borehole samples, were collected for hydrogeological and chemical analysis. For the first time, the study proposed that the redox zone could be identified and delineated through vertical analysis of water storage media, mineral composition, and hydrochemical characteristics. A hydrogeochemical cause model was constructed, revealing that AMD formation primarily occurs in oxidative and transition zones. Based on the redox zone characteristics of the study area, actual engineering sealing was performed on the oxidation and transition zones of cavity No. 23. As a result, the pH increased from 2.5 before remediation to 4.5, indicating a reduction in acidity. The concentrations of SO42- and Fe significantly decreased, reducing from 1360.0 mg/L and 147.0 mg/L before treatment to 726.0 mg/L and 23.6 mg/L after treatment; the total decrease amounting to 46.6 % and 84.0 %, respectively. The concentrations of Mn and Cu similarly, decreased by 10.7 % and 15.6 %, respectively. This study provides a novel approach and valuable reference for the refined identification and classification of redox zones after metal mine exploitation, as well as for the targeted plugging and treatment of cavities that produce AMD.

19.
Int J Biol Macromol ; 278(Pt 1): 134597, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39127286

RESUMEN

The considerable challenge of wound healing remains. In this study, we fabricated a novel multifunctional core-shell nanofibrous scaffold named EGF@BSP-CeO2/PLGA (EBCP), which is composed of Bletilla striata polysaccharide (BSP), Ceria nanozyme (CeO2) and epidermal growth factor (EGF) as the core and poly(lactic-co-glycolic acid) (PLGA) as the shell via an emulsion electrospinning technique. An increase in the BSP content within the scaffolds corresponded to improved wound healing performance. These scaffolds exhibited increased hydrophilicity and porosity and improved mechanical properties and anti-UV properties. EBCP exhibited sustained release, and the degradation rate was <4 % in PBS for 30 days. The superior biocompatibility was confirmed by the MTT assay, hemolysis, and H&E staining. In addition, the in vitro results revealed that, compared with the other groups, the EBCP group presented excellent antioxidant and antibacterial effects. More importantly, the in vivo results indicated that the wound closure rate of the EBCP group reached 94.0 % on day 10 in the presence of H2O2. The results demonstrated that EBCP could comprehensively regulate the wound microenvironment, possess hemostatic abilities, and significantly promote wound healing. In conclusion, the EBCP is promising for facilitating the treatment of infected wounds and represents a potential material for clinical applications.


Asunto(s)
Nanofibras , Orchidaceae , Polisacáridos , Andamios del Tejido , Cicatrización de Heridas , Cicatrización de Heridas/efectos de los fármacos , Nanofibras/química , Polisacáridos/química , Polisacáridos/farmacología , Animales , Andamios del Tejido/química , Orchidaceae/química , Cerio/química , Cerio/farmacología , Ratones , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Antibacterianos/farmacología , Antibacterianos/química , Antioxidantes/farmacología , Antioxidantes/química , Factor de Crecimiento Epidérmico/farmacología , Ratas , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Masculino , Porosidad , Humanos
20.
Aquat Toxicol ; 275: 107063, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39191072

RESUMEN

Diazepam (DZP) is a universally detected emerging pollutant in aquatic ecosystems. Although the sex-dependent effects of DZP on fish have been properly established, the underlying mechanisms remain unclear. In this study, zebrafish of both sexes were separately exposed to DZP (8 µg/L) for 21 days, and the alteration of the behaviors, brain amino acid neurotransmitter contents, and transcriptomic profiles were investigated. Although DZP exposure showed a sedative effect on both sexes, significantly reduced cumulative duration of high mobility and willingness to encounter the opposite sex were only observed in females. However, DZP significantly enhanced the brain levels of glutamate and glutamine in males but not in females. Transcriptome analysis identified more different expression genes (DEGs) in females (322 up-regulated and 311 down-regulated) than in males (138 up-regulated genes and 38 down-regulated). The DEGs in both sexes were significantly enriched in the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway of the synaptic vesicle cycle, indicating a possible pathway for the sedative effects of DZP on zebrafish. DZP exhibited different or even opposing regulatory patterns on gene expression in the brains of females and males, providing some insights into its sex-dependent impacts on the behaviors and brain neurotransmitter contents in zebrafish. Moreover, enrichment analysis also suggested that DZP exposure may affect the oocyte maturation in female zebrafish, which highlights the need to study its reproductive and transgenerational toxicity to fish species.


Asunto(s)
Diazepam , Transcriptoma , Contaminantes Químicos del Agua , Pez Cebra , Animales , Pez Cebra/genética , Femenino , Masculino , Diazepam/toxicidad , Contaminantes Químicos del Agua/toxicidad , Transcriptoma/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Perfilación de la Expresión Génica , Conducta Animal/efectos de los fármacos , Factores Sexuales , Regulación de la Expresión Génica/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA