Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-39244797

RESUMEN

Zinc is a significant source of heavy metal pollution that poses risks to both human health and biodiversity. Excessive concentrations of zinc can hinder the growth and development of insects and trigger cell death through oxidative damage. The midgut is the main organ affected by exposure to heavy metals. The silkworm, a prominent insect species belonging to the Lepidoptera class and widely used in China, serves as a model for studying the genetic response to heavy metal stress. In this study, high-throughput sequencing technology was employed to investigate detoxification-related genes in the midgut that are induced by zinc exposure. A total of 11,320 unigenes and 14,723 transcripts were identified, with 553 differentially expressed genes (DEGs) detected, among which 394 were up-regulated and 159 were down-regulated. The Gene Ontology (GO) analysis revealed that 452 DEGs were involved in 18 biological process subclasses, 14 cellular component subclasses and 8 molecular functional subclasses. Furthermore, the KEGG analysis demonstrated enrichment in pathways such as Protein digestion, absorption and Lysosome. Validation of the expression levels of 9 detoxification-related DEGs through qRT-PCR confirmed the accuracy of the RNA-seq results. This study not only contributes new insights into the detoxification mechanisms mechanism of silkworms against zinc contamination, but also serves as a foundation basis for understanding the molecular detoxification processes in lepidopteran insects.

2.
Artículo en Inglés | MEDLINE | ID: mdl-39191144

RESUMEN

Procambarus clarkii is an economically important species in China; however, its high mortality rate due to pathogenic bacteria, particularly Vibrio parahaemolyticus, results in significant economic loss. This study aimed to understand the immune response of crayfish to bacterial infection by comparing and analyzing transcriptome data of hepatopancreatic tissue from P. clarkii challenged with V. parahaemolyticus or treated with PBS. Physiological indices (TP, Alb, ACP, and AKP) were analyzed, and tissue sections were prepared. After assembling and annotating the data, 18,756 unigenes were identified. A comparison of the expression levels of these unigenes between the control and V. parahaemolyticus groups revealed 4037 DEGs, with 2278 unigenes upregulated and 1759 downregulated in the V. parahaemolyticus group. GO (Gene Ontology) enrichment analysis shows that the DGEs are mainly enriched in cellular anatomical activity, bindinga and cellular process, enrichment analysis of KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways showed that DGEs were mainly enriched in Base excision repair, Phagosome and Longevity regulating pathway. At the same time, lysosome was also enriched. The phagosome and lysosome pathways play a crucial role in the immune defense of crayfish against V. parahaemolyticus injection that will be highlighted. In addition, the expression levels of six selected immune-related DEGs were measured using qRT-PCR, which validated the results of RNA-seq analysis. This study provides a new perspective on the immune system and defense mechanisms of P. clarkii and a valuable foundation for further investigation of the molecular immune mechanisms of this species.

3.
Front Immunol ; 15: 1411936, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39108270

RESUMEN

Iron-binding proteins, known as ferritins, play pivotal roles in immunological response, detoxification, and iron storage. Despite their significance to organisms, little is known about how they affect the immunological system of the red swamp crayfish (Procambarus clarkii). In our previous research, one ferritin subunit was completely discovered as an H-like subunit (PcFeH) from P. clarkii. The full-length cDNA of PcFerH is 1779 bp, including a 5'-UTR (untranslated region, UTR) of 89 bp, 3'-UTR (untranslated region, UTR) of 1180 bp and an ORF (open reading frame, ORF) of 510 bp encoding a polypeptide of 169 amino acids that contains a signal peptide and a Ferritin domain. The deduced PcFerH protein sequence has highly identity with other crayfish. PcFerH protein's estimated tertiary structure is quite comparable to animal structure. The PcFerH is close to Cherax quadricarinatus, according to phylogenetic analysis. All the organs examined showed widespread expression of PcFerH mRNA, with the ovary exhibiting the highest levels of expression. Additionally, in crayfish muscles, intestines, and gills, the mRNA transcript of PcFerH was noticeably up-regulated, after LPS and Poly I:C challenge. The expression of downstream genes in the immunological signaling system was suppressed when the PcFerH gene was knocked down. All of these findings suggested that PcFerH played a vital role in regulating the expression of downstream effectors in the immunological signaling pathway of crayfish.


Asunto(s)
Astacoidea , Inmunidad Innata , Filogenia , Animales , Astacoidea/inmunología , Astacoidea/genética , Secuencia de Aminoácidos , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/metabolismo
4.
Int J Biol Macromol ; 277(Pt 2): 134231, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39074699

RESUMEN

To investigate the impact of chlorantraniliprole on Procambarus clarkii, acute toxicity tests were performed. Results indicated that 96 h post-exposure to chlorantraniliprole (60 mg/L) led to the separation of the hepatopancreas basement membrane, causing cell swelling, rupture, and vacuolation. Moreover, acid phosphatase (ACP) and alkaline phosphatase (AKP) activities exhibited divergent trends across four concentrations of chlorantraniliprole (0, 30, 60, and 90 mg/L). Hydrogen peroxide (H2O2) and catalase (CAT) levels significantly increased, while total superoxide dismutase (T-SOD) and malonaldehyde (MDA) activities decreased, indicating oxidative stress in the hepatopancreas. A total of 276 differentially expressed genes (DEGs) were identified, with 204 up-regulated and 72 down-regulated. Out of these, 114 DEGs were successfully annotated and classified into 99 pathways, with a primary focus on the cytochrome P450-mediated xenobiotic metabolism pathway. The DEGs enriched in this pathway, along with transcriptome data, were validated using quantitative-polymerase chain reaction. This study enhances the transcriptome database of P. clarkii and provides fundamental insights into its immune defense and antioxidant mechanisms. Additionally, it lays a theoretical foundation for future research on disease prevention in P. clarkii within rice-shrimp culture systems.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Xenobióticos , ortoaminobenzoatos , Animales , ortoaminobenzoatos/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Xenobióticos/metabolismo , Inactivación Metabólica/genética , Astacoidea/genética , Astacoidea/efectos de los fármacos , Astacoidea/metabolismo , Transcriptoma/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Perfilación de la Expresión Génica , Hepatopáncreas/metabolismo , Hepatopáncreas/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos
5.
Nat Commun ; 15(1): 5872, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997287

RESUMEN

How organisms respond to environmental stress is a key topic in evolutionary biology. This study focused on the genomic evolution of Laburnicola rhizohalophila, a dark-septate endophytic fungus from roots of a halophyte. Chromosome-level assemblies were generated from five representative isolates from structured subpopulations. The data revealed significant genomic plasticity resulting from chromosomal polymorphisms created by fusion and fission events, known as dysploidy. Analyses of genomic features, phylogenomics, and macrosynteny have provided clear evidence for the origin of intraspecific diploid-like hybrids. Notably, one diploid phenotype stood out as an outlier and exhibited a conditional fitness advantage when exposed to a range of abiotic stresses compared with its parents. By comparing the gene expression patterns in each hybrid parent triad under the four growth conditions, the mechanisms underlying growth vigor were corroborated through an analysis of transgressively upregulated genes enriched in membrane glycerolipid biosynthesis and transmembrane transporter activity. In vitro assays suggested increased membrane integrity and lipid accumulation, as well as decreased malondialdehyde production under optimal salt conditions (0.3 M NaCl) in the hybrid. These attributes have been implicated in salinity tolerance. This study supports the notion that hybridization-induced genome doubling leads to the emergence of phenotypic innovations in an extremophilic endophyte.


Asunto(s)
Diploidia , Raíces de Plantas , Plantas Tolerantes a la Sal , Raíces de Plantas/microbiología , Plantas Tolerantes a la Sal/microbiología , Plantas Tolerantes a la Sal/genética , Vigor Híbrido/genética , Filogenia , Genoma Fúngico , Ascomicetos/genética , Ascomicetos/metabolismo , Regulación Fúngica de la Expresión Génica , Endófitos/genética , Endófitos/metabolismo , Estrés Fisiológico/genética , Fenotipo , Tolerancia a la Sal/genética , Hibridación Genética
6.
Animals (Basel) ; 14(12)2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38929441

RESUMEN

Lead (Pb) is a major source of heavy metal contamination, and poses a threat to biodiversity and human health. Elevated levels of Pb can hinder insect growth and development, leading to apoptosis via mechanisms like oxidative damage. The midgut of silkworms is the main organ exposed to heavy metals. As an economically important lepidopteran model insect in China, heavy metal-induced stress on silkworms causes considerable losses in sericulture, thereby causing substantial economic damage. This study aimed to investigate Pb-induced detoxification-related genes in the midgut of silkworms using high-throughput sequencing methods to achieve a deeper comprehension of the genes' reactions to lead exposure. This study identified 11,567 unigenes and 14,978 transcripts. A total of 1265 differentially expressed genes (DEGs) were screened, comprising 907 upregulated and 358 downregulated genes. Subsequently, Gene Ontology (GO) classification analysis revealed that the 1265 DEGs were distributed across biological processes, cellular components, and molecular functions. This suggests that the silkworm midgut may affect various organelle functions and biological processes, providing crucial clues for further exploration of DEG function. Additionally, the expression levels of 12 selected detoxification-related DEGs were validated using qRT-PCR, which confirmed the reliability of the RNA-seq results. This study not only provides new insights into the detoxification defense mechanisms of silkworms after Pb exposure, but also establishes a valuable foundation for further investigation into the molecular detoxification mechanisms in silkworms.

7.
Plant Commun ; 5(1): 100672, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37563834

RESUMEN

Some fungal accessory chromosomes (ACs) may contribute to virulence in plants. However, the mechanisms by which ACs determine specific traits associated with lifestyle transitions along a symbiotic continuum are not clear. Here we delineated the genetic divergence in two sympatric but considerably variable isolates (16B and 16W) of the poplar-associated fungus Stagonosporopsis rhizophilae. We identified a âˆ¼0.6-Mb horizontally acquired AC in 16W that resulted in a mildly parasitic lifestyle in plants. Complete deletion of the AC (Δ16W) significantly altered the fungal phenotype. Specifically, Δ16W was morphologically more similar to 16B, showed enhanced melanization, and established beneficial interactions with poplar plants, thereby acting as a dark septate endophyte. RNA sequencing (RNA-seq) analysis showed that AC loss induced the upregulation of genes related to root colonization and biosynthesis of indole acetic acid and melanin. We observed that the AC maintained a more open status of chromatin across the genome, indicating an impressive remodeling of cis-regulatory elements upon AC loss, which potentially enhanced symbiotic effectiveness. We demonstrated that the symbiotic capacities were non-host-specific through comparable experiments on Triticum- and Arabidopsis-fungus associations. Furthermore, the three isolates generated symbiotic interactions with a nonvascular liverwort. In summary, our study suggests that the AC is a suppressor of symbiosis and provides insights into the underlying mechanisms of mutualism with vascular plants in the absence of traits encoded by the AC. We speculate that AC-situated effectors and other potential secreted molecules may have evolved to specifically target vascular plants and promote mild virulence.


Asunto(s)
Ascomicetos , Simbiosis , Simbiosis/genética , Endófitos/genética , Árboles/genética , Ascomicetos/genética , Plantas/genética , Cromosomas
8.
Mol Biol Rep ; 50(12): 10301-10313, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37971570

RESUMEN

BACKGROUND: Brachyura crab is the largest branch of Decapoda crustacean. Phylogenetic relationships within Brachyura remain controversial to be investigated. The mitochondrial genome (mitogenome) is an important molecular marker for studying the phylogenetic relationships of Brachyura. METHODS AND RESULTS: To understand the phylogeny of Brachyura, the three complete mitogenomes from Charybdis annulata, Leptodius exaratus, and Spider crab were sequenced and annotated. Their full length was 15,747, 15,716, and 16,608 bp long, respectively. The first two crabs both contained 13 protein-coding genes (PCGs), two rRNA genes, 22 tRNA genes and a control region. However, Spider crab contained 13 PCGs, two rRNA genes, 25 tRNA genes and a control region. The mitogenomes of each of the three crabs exhibited high AT content (67.8%, 69.1%, and 70.8%), with negative AT skews (-0.014, - 0.028, and - 0.017) and GC skews (-0.269, - 0.286, and - 0.341). The gene order of C. annulata was identical to the ancestor of Brachyura. Compared with the ancestor of Brachyura, L. exaratus exhibited the gene rearrangements of Val (V)-rrnS-control region, and Spider crab had the four copies of Lys (K). Phylogenetic analyses indicated that C. annulata belonged to Portunidae family, Portunoidea superfamilies, L. exaratus belonged to Xanthidae family, Xanthoidea superfamilies, and Spider crab belonged to Mithracidae family, Majoidea superfamilies. Phylogenetic analyses showed that the two species (Somanniathelphusa boyangensis and Huananpotamon lichuanense) belonging to the Potamoidea were sister groups to the Thoracotremata, thus supporting the conclusion that Heterotremata is polyphyletic. CONCLUSION: The results of this study enriched the crab mitogenome database and enabled us to better understand the phylogenetic relationships of Brachyura.


Asunto(s)
Braquiuros , Genoma Mitocondrial , Animales , Filogenia , Genoma Mitocondrial/genética , Braquiuros/genética , Reordenamiento Génico/genética , ARN de Transferencia/genética
9.
Heliyon ; 9(11): e21375, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38027771

RESUMEN

In this study, the whole mitochondrial genome (mitogenome) of Parasa sinica was sequenced. It contains 15,306 base pairs (bp), 13 protein-coding genes (PCGs), two ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs), and one non-coding regulatory area (CR), all of which are shared by other lepidopterans. It follows the same gene order as ordinary lepidopterans. Further, out of these 37 genes, 23 are present on the heavy strand whereas the remaining 14 are located on the light strand. The A + T composition of the mitogenome is relatively high. Although P. sinica has a negative AT-skew and GC-skew, the GC-skew value is significantly lower than the AT-skew value. All PCGs, with the exception of CO1, carry the same start codon (ATN). All tRNAs exhibit the usual cloverleaf secondary structure. We identified the conserved motif "ATAGA + poly-T″ found in other lepidopteran insects at the beginning of the CR. We collected the concatenated PCGs sequences in the mitochondrial genome of 15 species of Zygaenoidea, with the sequences of Geometridae as outgroups, including P. sinica, and constructed phylogenetic trees using Bayesian inference (BI) and maximum likelihood (ML) methods. The monolineage of each superfamily is usually well supported. Based on phylogenetic analysis, P. sinica is a member of family Limacodidae, strongly supporting the monophyly of the Zygaenoidea groups.

10.
Genetica ; 151(6): 339-348, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37831421

RESUMEN

The light-dark cycle significantly impacts the growth and development of animals. Mantis shrimps (Oratosquilla oratoria) receive light through their complex photoreceptors. To reveal the adaptive expression mechanism of the mantis shrimp induced in a dark environment, we performed comparative transcriptome analysis with O. oratoria cultured in a light environment (Oo-L) as the control group and O. oratoria cultured in a dark environment (Oo-D) as the experimental group. In the screening of differentially expressed genes (DEGs) between the Oo-L and Oo-D groups, a total of 88 DEGs with |log2FC| > 1 and FDR < 0.05 were identified, of which 78 were upregulated and 10 were downregulated. Then, FBP1 and Pepck were downregulated in the gluconeogenesis pathway, and MKNK2 was upregulated in the MAPK classical pathway, which promoted cell proliferation and differentiation, indicating that the activity of mantis shrimp was slowed and the metabolic rate decreases in the dark environment. As a result, the energy was saved for its growth and development. At the same time, we performed gene set enrichment analysis (GSEA) on all DEGs. In the KEGG pathway analysis, each metabolic pathway in the dark environment showed a slowing trend. GO was enriched in biological processes such as eye development, sensory perception and sensory organ development. The study showed that mantis shrimp slowed down metabolism in the dark, while the role of sensory organs prominent. It provides important information for further understanding the energy metabolism and has great significance to study the physiology of mantis shrimp in dark environment.


Asunto(s)
Perfilación de la Expresión Génica , Transcriptoma , Animales , Crustáceos/genética , Crustáceos/metabolismo
11.
Front Plant Sci ; 14: 1226720, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37719211

RESUMEN

Ectomycorrhizal (ECM) fungi play fundamental roles in host plant growth and terrestrial ecosystems. Cedrus deodara is cultivated in several regions in China, has high ecological, economic and medicinal value, for its afforestation and providing timber and wood oil. Here, we investigated ECM colonization status of four urban C. deodara forests in Nantong, East China. We also characterized soil spore banks by conducting bioassay experiments using soils collected from these forests. In total, we identified 19 ECM fungal species, of which 13 species were found in mature forests and 9 species were identified in bioassay experiments, with only 3 species shared. Soil pH and available P content had significant effects on species occurrence in both mature trees and bioassay seedlings on local scales. ECM communities clearly (A = 0.391, p = 0.006) separated mature forests from spore banks. Thelephoracae was the richest family we detected associated with C. deodara, while Trichophaea sp. was the most dominant in mature forests, and Wilcoxina sp. was dominant in spore banks. ECM richness affected the growth of bioassay seedlings, especially after inoculation with 2 ECM species, promoting root growth, significantly (F = 3.028, p = 0.050), but it had no effects on shoots (F = 1.778, p = 0.177). No effect of inoculation rate was found on seedlings growth. To conserve this important tree species, the ECM fungi that are associated with it should be considered.

12.
Mol Biol Rep ; 50(5): 4165-4173, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36894769

RESUMEN

BACKGROUND: As the dominant species of Stomatopoda, Oratosquilla oratoria has not been fully cultivated artificially, and the fishery production mainly depends on marine fishing. Due to the lack of stomatopod genome, the development of molecular breeding of mantis shrimps still lags behind. METHODS AND RESULTS: A survey analysis was performed to obtain the genome size, GC content and heterozygosity ratio in order to provide a fundation for subsequent whole-genome sequencing. The results showed that the estimated genome size of the O. oratoria was about 2.56 G, and the heterozygosity ratio was 1.81%, indicating that it is a complex genome. Then the sequencing data was preliminarily assembled with k-mer = 51 by SOAPdenovo software to obtain a genome size of 3.01G and GC content of 40.37%. According to ReapeatMasker and RepeatModerler analysis, the percentage of repeats in O. oratoria was 45.23% in the total genome, similar to 44% in Survey analysis. The MISA tool was used to analyze the simple sequence repeat (SSR) characteristics of genome sequences including Oratosquilla oratoria, Macrobrachium nipponense, Fenneropenaeus chinensis, Eriocheir japonica sinensis, Scylla paramamosain and Paralithodes platypus. All crustacean genomes showed similar SSRs characteristics, with the highest proportion of di-nucleotide repeat sequences. And AC/GT and AGG/CCT repeats were the main types of di-nucleotide and tri-nucleotide repeats in O. oratoria. CONCLUSION: This study provided a reference for the genome assembly and annotation of the O. oratoria, and also provided a theoretical basis for the development of molecular markers of O. oratoria.


Asunto(s)
Crustáceos , Nucleótidos , Animales , Crustáceos/genética , Secuencia de Bases , Repeticiones de Microsatélite/genética , Genoma de Planta
13.
Animals (Basel) ; 13(6)2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36978586

RESUMEN

To resolve and reconstruct phylogenetic relationships within Pyraloidea based on molecular data, the mitochondrial genome (mitogenome) was widely applied to understand phylogenetic relations at different taxonomic levels. In this research, a complete mitogenome of Cydalima perspectalis was recorded, and the phylogenetic position of C. perspectalis was inferred based on the sequence in combination with other available sequence data. According to the research, the circular mitochondrial genome is 15,180 bp in length. It contains 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), 13 typical protein-coding genes (PCGs), and a non-coding control region. The arrangement of a gene of the C. perspectalis mitogenome is not the same as the putative ancestral arthropod mitogenome. All of the PCGs are initiated by ATN codons, except for the cytochrome c oxidase subunit 1 (cox1) gene, which is undertaken by CGA. Five genes have incomplete stop codons that contain only 'T'. All tRNA genes display a typical clover-leaf structure of mitochondrial tRNA, except for trnS1 (AGN). The control region contained an 'ATAGG(A)'-like motif followed by a poly-T stretch. Based on the mitochondrial data, phylogenetic analysis within Pyraloidea was carried out using Bayesian inference (BI) and maximum likelihood (ML) analyses. Phylogenetic analysis showed that C. perspectalis is more closely related to Pygospila tyres within Spilomelinae than those of Crambidae and Pyraloidea.

14.
Front Immunol ; 13: 906294, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757717

RESUMEN

Integrins are a large group of cell-surface proteins that are classified as transmembrane proteins. Integrins are classified into different types based on sequence variations, leading to structural and functional diversity. They are broadly distributed in animals and have a wide range of biological functions such as cell-to-cell communication, intracellular cytoskeleton organization, cellular signaling, immune responses, etc. Integrins are among the most abundant cell surface proteins in insects, exhibiting their indispensability in insect physiology. Because of their critical biological involvement in physiological processes, they appear to be a novel target for designing effective pest control strategies. In the current literature review, we first discuss the discovery and expression responses of integrins against various types of pathogens. Secondly, we examine the specific biological roles of integrins in controlling microbial pathogens, such as phagocytosis, encapsulation, nodulation, immune signaling, and so on. Finally, we describe the possible uses of integrins to control agricultural insect pests.


Asunto(s)
Insectos , Integrinas , Animales , Fagocitosis , Transducción de Señal
15.
Front Immunol ; 13: 874605, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35619707

RESUMEN

Emerging evidence reveals that the stimulator of the interferon genes (STING) signaling pathway in insects and other animal cells helps them to sense and effectively respond to infection caused by numerous types of microbial pathogens. Recent studies have shown that genomic material from microbial pathogens induces the STING signaling pathway for the production of immune factors to attenuate infection. In contrast, microbial pathogens are equipped with various factors that assist them in evading the STING signaling cascade. Here we discuss the STING signaling pathway different animal groups compared to human and then focus on its crucial biological roles and application in the microbial infection of insects. In addition, we examine the negative and positive modulators of the STING signaling cascade. Finally, we describe the microbial pathogen strategies to evade this signaling cascade for successful invasion.


Asunto(s)
Inmunidad Innata , Proteínas de la Membrana , Animales , Insectos/metabolismo , Proteínas de la Membrana/genética , Transducción de Señal/fisiología
16.
J Environ Manage ; 313: 114986, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35390660

RESUMEN

With the wide use of copper nanoparticles (CuNPs) in various industrial and commercial applications, they inevitably enter the aquatic environment. However, their behavior in the aquatic environment and potential toxicity to aquatic organisms remain little known. In this study, we investigated the behavior of CuNPs in freshwater, as well as the toxicity and bioaccumulation of CuNPs and copper sulfate (CuSO4), used as a positive control for copper ions toxicity, in red swamp crayfish (Procambarus clarkii). The results showed that CuNPs released copper ions into freshwater and aggregated rapidly in freshwater, and their release of copper ions and aggregation slowed down at a higher concentration of CuNPs. The calculated 72-h LC50 values for crayfish were 1.18 and 0.54 mg/L for CuNPs and CuSO4, respectively. Cu accumulation in the gill and hepatopancreas from CuSO4 treatments was significantly higher than that from CuNPs, and the highest Cu bioaccumulation level in crayfish was found in the gill, followed by hepatopancreas and muscle with the exposure of copper. The activities of the antioxidative enzymes in the crayfish significantly decreased after exposure to CuNPs for 48 h, compared to the control (without CuNPs or CuSO4). Histological examination revealed that there was no significant alteration of hepatopancreas in the crayfish exposed to CuNPs. Meanwhile, the growth of crayfish was not significantly inhibited by CuNPs. These results suggested that CuNPs exposure can induce oxidative stress in the crayfish, gill is the main tissue for their accumulation, and their toxicity is mainly caused by the released copper ions.


Asunto(s)
Nanopartículas , Contaminantes Químicos del Agua , Animales , Astacoidea , Cobre/toxicidad , Iones , Nanopartículas/toxicidad , Contaminantes Químicos del Agua/toxicidad
17.
Front Immunol ; 13: 1039956, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36703962

RESUMEN

The yellow catfish (Pelteobagrus fulvidraco) is a freshwater fish with high economic value in eastern China. Nevertheless, pathogens causing bacterial diseases in P. fulvidraco have brought about huge economic loss and high mortality in artificial aquaculture. For disease control, it is critical to further understand the immune system of yellow catfish and immune-related genes with which they respond to pathogenic infections. In this study, high-throughput sequencing methods were used to analyze the transcriptomic spectrum of the head kidney from P. fulvidraco challenged by Vibrio cholera. A total of 45,544 unique transcript fragments (unigenes) were acquired after assembly and annotation, with an average length of 1,373 bp. Additionally, 674 differentially expressed genes (DEGs) were identified after stimulation with V. cholerae, 353 and 321 genes were identified as remarkably up- or downregulated, respectively. To further study the immune-related DEGs, we performed KEGG enrichment and GO enrichment. The results showed gene regulation of response to stimulus, immune response, immune system progress, response to external stimuli and cellular response to stimuli. Analysis of KEGG enrichment is important to identify chief immune related pathways. Real-time quantitative reverse transcription-PCR (qRT-PCR) results indicated 10 immune response genes that were found to be upregulated compared to a control group after 6 h of V. cholerae challenging. In summary, the results of our study are helpful to determine the defense mechanisms and immune system responses of yellow catfish in reaction to bacterial challenges.


Asunto(s)
Bagres , Proteínas de Peces , Animales , Riñón Cefálico/metabolismo , Perfilación de la Expresión Génica , Transcriptoma
18.
Ecotoxicol Environ Saf ; 227: 112911, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34673411

RESUMEN

Chromium (Cr) as a chromate anion has a strong redox capacity that seriously threatens the ecological environment and human health. Cr can contaminate water and impart toxicity to aquatic species. Procambarus clarkii is an important food source that once represented a large proportion of the aquaculture industry due to its rapid reproduction and high economic value. However, there have been reports on the death of P. clarkii due to heavy metal pollution. The underlying mechanism regarding heavy metal toxicity was studied in this paper. The transcriptome data of hemocytes extracted from P. clarkii injected with Cr were analyzed by high-throughput sequencing and compared to the control group. In total, 48,128,748 clean reads were obtained in the treatment group and 56,480,556 clean reads were obtained in the control group. The reads were assembled using Trinity and the identified unigenes were then annotated. Then, 421 differentially-expressed genes (DEGs) were found, 170 of which were upregulated and 251 downregulated. Many of these genes were found to be related to glutathione metabolism and transportation. The glutathione metabolic pathway of P. clarkii was thus activated by Cr exposure to detoxify and maintain body function. Validation of DEGs with quantitative real-time PCR confirms the changes in gene expression. Thus, this study provides data supporting a glutathione-focused response of P. clarkii to exposure to heavy metals.


Asunto(s)
Astacoidea , Clarkia , Animales , Antioxidantes , Astacoidea/genética , Cromo/toxicidad , Mecanismos de Defensa , Perfilación de la Expresión Génica , Humanos , Transcriptoma
19.
Anim Reprod Sci ; 234: 106865, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34614449

RESUMEN

There has been a recent emphasis on production of large-sized Eriocheir sinensis broodstock. In China, aquaculturists generally prefer wild-caught (WC) crabs from the Yangtze River as broodstock because offspring performance is superior to that of pond-reared (PR) broodstock. Currently, however, there is a ban on fishing in the Yangtze River, and effects on E. sinensis breeding have not been ascertained. There was comparison in the present study of reproductive performance and semen characteristics of male broodstock of PR and WC groups. After copulation, sperm quantity in the vas deferens of crabs in specimens of both groups was large, although there was a consistent decrease in vaso-somatic index. Although sperm density of PR crabs was less, that of WC specimens remained relatively constant. Specimens of neither group, however, had changes in the hepatopancreas index or condition factor, and sperm survival was close to 100%. Although the acrosome reaction was detected in response to cold-temperature induction, there were differences in extent of reaction to cold temperatures. Importantly, in as many as 98% of sperm from female spermathecae, the reaction was completed, which was considerably greater than 15% for sperm of males post-mating. It is concluded there was no difference between PR and WC crabs with respect to reproductive performance or semen characteristics, and, notably, sperm from PR crabs were of sufficient quality for use in E. sinensis aquaculture enterprises. Accordingly, it is predicted the Yangtze River fishing ban would only have a limited effect on supply of male E. sinensis broodstock.


Asunto(s)
Crianza de Animales Domésticos , Braquiuros/fisiología , Animales , Animales Salvajes , Tamaño Corporal , Masculino , Reproducción/fisiología , Semen , Análisis de Semen
20.
Fish Shellfish Immunol ; 119: 280-288, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34571158

RESUMEN

As an important economic species in China, aquaculture of the crayfish Procambarus clarkii has suffered huge losses due to infection by pathogenic bacteria, mainly by Aeromonas hydrophila, which leads to high mortality and huge economic loss. To better understand the immune response of crayfish against bacterial infection, we compared and analyzed transcriptome data of hepatopancreatic tissue from P. clarkii that were either challenged with A. hydrophila or treated with PBS. After assembly and annotation of the data, 32,041 unigenes with an average length of 1512 base pairs were identified. Compared to control group, Differential gene expression (DEG) analysis revealed 608 DEGs were obtained, of which 274 unigenes were upregulated and 334 were downregulated in the A. hydrophila group. Furthermore, the expression levels of eight selected immune-related DEGs were validated by qRT-PCR, substantiating the reliability of RNA-seq results. This study not only provides effective data support for immune defense strategies of P. clarkii in response to bacterial infections, but also provides new information about the P. clarkii immune system and defense mechanisms, and a valuable basis for further studies to elucidate the molecular immune mechanisms of this species.


Asunto(s)
Aeromonas hydrophila , Astacoidea , Animales , Astacoidea/genética , Perfilación de la Expresión Génica , Reproducibilidad de los Resultados , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA