Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 93
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39273597

RESUMEN

Hu antigen R (HuR) plays a key role in regulating genes critical to the pathogenesis of diabetic nephropathy (DN). This study investigates the therapeutic potential of niclosamide (NCS) as an HuR inhibitor in DN. Uninephrectomized mice were assigned to four groups: normal control; untreated db/db mice terminated at 14 and 22 weeks, respectively; and db/db mice treated with NCS (20 mg/kg daily via i.p.) from weeks 18 to 22. Increased HuR expression was observed in diabetic kidneys from db/db mice, which was mitigated by NCS treatment. Untreated db/db mice exhibited obesity, progressive hyperglycemia, albuminuria, kidney hypertrophy and glomerular mesangial matrix expansion, increased renal production of fibronectin and a-smooth muscle actin, and decreased glomerular WT-1+-podocytes and nephrin expression. NCS treatment did not affect mouse body weight, but reduced blood glucose and HbA1c levels and halted the DN progression observed in untreated db/db mice. Renal production of inflammatory and oxidative stress markers (NF-κBp65, TNF-a, MCP-1) and urine MDA levels increased during disease progression in db/db mice but were halted by NCS treatment. Additionally, the Wnt1-signaling-pathway downstream factor, Wisp1, was identified as a key downstream mediator of HuR-dependent action and found to be markedly increased in db/db mouse kidneys, which was normalized by NCS treatment. These findings suggest that inhibition of HuR with NCS is therapeutic for DN by improving hyperglycemia, renal inflammation, and oxidative stress. The reduction in renal Wisp1 expression also contributes to its renoprotective effects. This study supports the potential of repurposing HuR inhibitors as a novel therapy for DN.


Asunto(s)
Nefropatías Diabéticas , Reposicionamiento de Medicamentos , Proteína 1 Similar a ELAV , Niclosamida , Animales , Nefropatías Diabéticas/tratamiento farmacológico , Nefropatías Diabéticas/metabolismo , Ratones , Proteína 1 Similar a ELAV/metabolismo , Proteína 1 Similar a ELAV/genética , Masculino , Niclosamida/farmacología , Niclosamida/uso terapéutico , Riñón/metabolismo , Riñón/patología , Riñón/efectos de los fármacos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Glucemia/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
2.
Biomolecules ; 14(8)2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39199427

RESUMEN

Src homology 3 (SH3) domains play a critical role in mediating protein-protein interactions (PPIs) involved in cell proliferation, migration, and the cytoskeleton. Despite their abundance in the human proteome, the functions and molecular interactions of many SH3 domains remain unknown, and this is in part due to the lack of SH3-domain-specific reagents available for their study. Affimer proteins have been developed as affinity reagents targeting a diverse range of targets, including those involved in PPIs. In this study, Affimer proteins were isolated against both the N- and C-terminal SH3 domains (NSH3 and CSH3) of growth-factor-receptor-bound protein 2 (Grb2), an adapter protein that provides a critical link between cell surface receptors and Ras signalling pathways. Targeting the CSH3 alone for the inhibition of PPIs appeared sufficient for curtailing Ras signalling in mammalian cell lines stimulated with human epidermal growth factor (EGF), which conflicts with the notion that the predominant interactions with Ras activating Son of sevenless (SOS) occur via the NSH3 domain. This result supports a model in which allosteric mechanisms involved in Grb2-SOS1 interaction modulate Ras activation.


Asunto(s)
Proteína Adaptadora GRB2 , Transducción de Señal , Proteínas ras , Dominios Homologos src , Proteína Adaptadora GRB2/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Proteínas ras/metabolismo , Unión Proteica , Proteína SOS1/metabolismo , Proteína SOS1/química , Proteína SOS1/genética , Factor de Crecimiento Epidérmico/metabolismo
3.
iScience ; 27(8): 110461, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39104409

RESUMEN

Monoclonal antibodies have revolutionized therapies, but non-immunoglobulin scaffolds are becoming compelling alternatives owing to their adaptability. Their ability to be labeled with imaging or cytotoxic compounds and to create multimeric proteins is an attractive strategy for therapeutics. Focusing on HER2, a frequently overexpressed receptor in breast cancer, this study addresses some limitations of conventional targeting moieties by harnessing the potential of these scaffolds. HER2-binding Affimers were isolated and characterized, demonstrating potency as binding reagents and efficient internalization by HER2-overexpressing cells. Affimers conjugated with cytotoxic agent achieved dose-dependent reductions in cell viability within HER2-overexpressing cell lines. Bispecific Affimers, targeting HER2 and virus-like particles, facilitated efficient internalization of virus-like particles carrying enhanced green fluorescent protein (eGFP)-encoding RNA, leading to protein expression. Anti-HER2 affibody or designed ankyrin repeat protein (DARPin) fusion constructs with the anti-VLP Affimer further underscore the adaptability of this approach. This study demonstrates the versatility of scaffolds for precise delivery of cargos into cells, advancing biotechnology and therapeutic research.

4.
J Hazard Mater ; 465: 133420, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38183943

RESUMEN

Rapid and highly effective removal of hexavalent chromium (Cr(Ⅵ)) is extremely vital to water resources restoration and environmental protection. To overcome the pH limitation faced by most ionic absorbents, an always positive covalent organic nanosheet (CON) material was prepared and its Cr(VI) adsorption and removal capability was investigated in detail. As-prepared EB-TFB CON (TFB = 1,3,5-benzaldehyde, EB = ethidium bromide) shows strong electropositivity in the tested pH range of 1 ∼ 10, display a pH-independent Cr(VI) removal ability, and work well for Cr(VI) pollution treatment with good anti-interference capability and reusability in a wide pH range covering almost all Cr(VI)-contaminated real water samples, thus eliminating the requirement for pH adjustment. Moreover, the nanosheet structure, which is obtained by a facile ultrasonic-assisted self-exfoliation, endows EB-TFB CON with fully exposed active sites and shortened mass transfer channels, and the Cr(VI) adsorption equilibrium can be reached within 15 min with a high adsorption capacity of 280.57 mg·g-1. The proposed Cr(VI) removal mechanism, which is attributed to the synergetic contributions of electrostatic adsorption, ion exchange and chemical reduction, is demonstrated by experiments and theoretical calculations. This work not only provides a general Cr(VI) absorbent without pH limitation, but also presents a paradigm to prepare ionic CONs with relatively constant surface charges.

5.
J Med Chem ; 66(22): 15370-15379, 2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37963839

RESUMEN

A DNA-functionalized porphyrinic MOF (porMOF) drug delivery system was successfully constructed. porMOF as a photosensitizer and drug delivery carrier can integrate photodynamic therapy (PDT) and chemotherapy. Via the strong coordination interaction between the zirconium cluster of porMOF and the terminal phosphate group of DNA, the stable modification of the DNA layer on the porMOF surface is achieved. Meanwhile, the introduction of C/G-rich base pairs into the DNA double-stranded structure provides more binding sites of chemotherapeutic drug doxorubicin (DOX). AS1411, an aptamer of nucleolin proteins that are overexpressed by cancer cells, is introduced in the double-stranded terminal, which can endow the nanosystem with the ability to selectively recognize cancer cells. C-rich sequences in DNA double strands form an i-motif structure under acidic conditions to promote the highly efficient release of DOX in cancer cells. In vitro and in vivo experiments demonstrate that the synergistic PDT/chemotherapy modality achieves highly efficient cancer cell killing and tumor ablation without undesirable side effects.


Asunto(s)
Estructuras Metalorgánicas , Neoplasias , Humanos , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/uso terapéutico , Sistemas de Liberación de Medicamentos , Neoplasias/tratamiento farmacológico , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Portadores de Fármacos/química , ADN , Línea Celular Tumoral , Liberación de Fármacos
6.
RSC Med Chem ; 14(11): 2268-2276, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37974961

RESUMEN

We successfully designed a smart activatable nanomachine for cancer synergistic therapy. Photodynamic therapy (PDT) and chemotherapy can be activated by intracellular telomerase while anti-cancer drugs can be effectively transported into tumour cells. An Sgc8 aptamer was designed, which can specifically distinguish tumour cells from normal cells and perform targeted therapy. The nanomachine entered the tumour cells by recognising PTK7, which is overexpressed on the surface of cancer cells. Then, the "switch" of the system was opened by TP sequence extension under telomerase stimulus. So, the chemotherapeutic drug DOX was released to achieve the chemotherapy, and the Ce6 labelled Sgc8-apt was released to activate the PDT. It was found that if no telomerase existed, the Ce6 would always be in an "off" state and could not activate the PDT. Telomerase is the key to controlling the activation of the PDT, which effectively reduces the damage photosensitisers cause to normal cells. Using in vitro and in vivo experiments, the nanomachine shows an excellent performance in targeted synergistic therapy, which is expected to be utilised in the future.

7.
Anal Chem ; 95(42): 15725-15735, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37819747

RESUMEN

The trans-cleavage activity of CRISPR/Cas12a has been widely used in biosensing. However, many CRISPR/Cas12a-based biosensors, especially those that work in "on-off-on" mode, usually suffer from high background and thus impossible intracellular application. Herein, this problem is efficiently overcome by elaborately designing the activator strand (AS) of CRISPR/Cas12a using the "RESET" effect found by our group. The activation ability of the as-designed AS to CRISPR/Cas12a can be easily inhibited, thus assuring a low background for subsequent biosensing applications, which not only benefits the detection sensitivity improvement of CRISPR/Cas12a-based biosensors but also promotes their applications in live cells as well as makes it possible to design high-performance biosensors with greatly improved flexibility, thus achieving the analysis of a wide range of targets. As examples, by using different strategies such as strand displacement, strand cleavage, and aptamer-substrate interaction to reactivate the inhibited enzyme activity, several CRISPR/Cas12a-based biosensing systems are developed for the sensitive and specific detection of different targets, including nucleic acid (miR-21), biological small molecules (ATP), and enzymes (hOGG1), giving the detection limits of 0.96 pM, 8.6 µM, and 8.3 × 10-5 U/mL, respectively. Thanks to the low background, these biosensors are demonstrated to work well for the accurate imaging analysis of different biomolecules in live cells. Moreover, we also demonstrate that these sensing systems can be easily combined with lateral flow assay (LFA), thus holding great potential in point-of-care testing, especially in poorly equipped or nonlaboratory environments.


Asunto(s)
Técnicas Biosensibles , Ácidos Nucleicos , Sistemas CRISPR-Cas/genética , Bioensayo , Procesamiento de Imagen Asistido por Computador , Oligonucleótidos
8.
Cell Rep ; 42(10): 113184, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37776520

RESUMEN

Kinases are important therapeutic targets, and their inhibitors are classified according to their mechanism of action, which range from blocking ATP binding to covalent inhibition. Here, a mechanism of inhibition is highlighted by capturing p21-activated kinase 5 (PAK5) in an intermediate state of activation using an Affimer reagent that binds in the P+1 pocket. PAK5 was identified from a non-hypothesis-driven high-content imaging RNAi screen in urothelial cancer cells. Silencing of PAK5 resulted in reduced cell number, G1/S arrest, and enlargement of cells, suggesting it to be important in urothelial cancer cell line survival and proliferation. Affimer reagents were isolated to identify mechanisms of inhibition. The Affimer PAK5-Af17 recapitulated the phenotype seen with siRNA. Co-crystallization revealed that PAK5-Af17 bound in the P+1 pocket of PAK5, locking the kinase into a partial activation state. This mechanism of inhibition indicates that another class of kinase inhibitors is possible.


Asunto(s)
Neoplasias , Quinasas p21 Activadas , Humanos , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo , Fosforilación , Unión Proteica
9.
Talanta ; 265: 124880, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37393713

RESUMEN

A heteropore covalent organic framework incorporated silicone tube (S-tube@PDA@COF) was used as adsorbent to purify the matrices in vegetable extracts. The S-tube@PDA@COF was fabricated by a facile in-situ growth method and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction and N2 adsorption-desorption. The as-prepared composite exhibited high removal efficiency of phytochromes and recovery (81.13-116.62%) of 15 chemical hazards from 5 representative vegetable samples. This study opens a promising avenue toward the facile synthesis of covalent organic frameworks (COFs)-derived silicone tubes for streamline operation in food sample pretreatment.

10.
J Transl Med ; 21(1): 428, 2023 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391777

RESUMEN

BACKGROUND: Upregulation of an RNA-binding protein HuR has been implicated in glomerular diseases. Herein, we evaluated whether it is involved in renal tubular fibrosis. METHODS: HuR was firstly examined in human kidney biopsy tissue with tubular disease. Second, its expression and the effect of HuR inhibition with KH3 on tubular injury were further assessed in a mouse model induced by a unilateral renal ischemia/reperfusion (IR). KH3 (50 mg kg-1) was given daily via intraperitoneal injection from day 3 to 14 after IR. Last, one of HuR-targeted pathways was examined in cultured proximal tubular cells. RESULTS: HuR significantly increases at the site of tubular injury both in progressive CKD in patients and in IR-injured kidneys in mice, accompanied by upregulation of HuR targets that are involved in inflammation, profibrotic cytokines, oxidative stress, proliferation, apoptosis, tubular EMT process, matrix remodeling and fibrosis in renal tubulointerstitial fibrosis. KH3 treatment reduces the IR-induced tubular injury and fibrosis, accompanied by the remarkable amelioration in those involved pathways. A panel of mRNA array further revealed that 519 molecules in mouse kidney following IR injury changed their expression and 71.3% of them that are involved in 50 profibrotic pathways, were ameliorated when treated with KH3. In vitro, TGFß1 induced tubular HuR cytoplasmic translocation and subsequent tubular EMT, which were abrogated by KH3 administration in cultured HK-2 cells. CONCLUSIONS: These results suggest that excessive upregulation of HuR contributes to renal tubulointerstitial fibrosis by dysregulating genes involved in multiple profibrotic pathways and activating the TGFß1/HuR feedback circuit in tubular cells. Inhibition of HuR may have therapeutic potential for renal tubular fibrosis.


Asunto(s)
Enfermedades Renales , Humanos , Animales , Ratones , Riñón , Apoptosis , Citocinas , Citoplasma
11.
Front Cardiovasc Med ; 10: 1094563, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36865889

RESUMEN

Dilated Cardiomyopathy is a common form of heart failure. Determining how this disease affects the structure and organization of cardiomyocytes in the human heart is important in understanding how the heart becomes less effective at contraction. Here we isolated and characterised Affimers (small non-antibody binding proteins) to Z-disc proteins ACTN2 (α-actinin-2), ZASP (also known as LIM domain binding protein 3 or LDB3) and the N-terminal region of the giant protein titin (TTN Z1-Z2). These proteins are known to localise in both the sarcomere Z-discs and the transitional junctions, found close to the intercalated discs that connect adjacent cardiomyocytes. We use cryosections of left ventricles from two patients diagnosed with end-stage Dilated Cardiomyopathy who underwent Orthotopic Heart Transplantation and were whole genome sequenced. We describe how Affimers substantially improve the resolution achieved by confocal and STED microscopy compared to conventional antibodies. We quantified the expression of ACTN2, ZASP and TTN proteins in two patients with dilated cardiomyopathy and compared them with a sex- and age-matched healthy donor. The small size of the Affimer reagents, combined with a small linkage error (the distance from the epitope to the dye label covalently bound to the Affimer) revealed new structural details in Z-discs and intercalated discs in the failing samples. Affimers are thus useful for analysis of changes to cardiomyocyte structure and organisation in diseased hearts.

12.
J Hazard Mater ; 448: 130821, 2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36709736

RESUMEN

Lignin, the most abundant source of renewable aromatic compounds derived from natural lignocellulosic biomass, has great potential for various applications as green materials due to its abundant active groups. However, it is still challenging to quickly construct green polymers with a certain crystallinity by utilizing lignin as a building block. Herein, new green lignin-based covalent organic polymers (LIGOPD-COPs) were one-pot fabricated with water as the reaction solvent and natural lignin as the raw material. Furthermore, by using paraformaldehyde as a protector and modulator, the LIGOPD-COPs prepared under optimized conditions displayed better crystallinity than reported lignin-based polymers, demonstrating the feasibility of preparing lignin-based polymers with improved crystallinity. The improved crystallinity confers LIGOPD-COPs with enhanced application performance, which was demonstrated by their excellent performances in sample treatment of non-targeted food safety analysis. Under optimized conditions, phytochromes, the main interfering matrices, were almost completely removed from different phytochromes-rich vegetables by LIGOPD-COPs, accompanied by "full recovery" of 90 chemical hazards. Green, low-cost, and reusable properties, together with improved crystallinity, will accelerate the industrialization and marketization of lignin-based COPs, and promote their applications in many fields.


Asunto(s)
Lignina , Polímeros , Lignina/química , Polímeros/química , Biomasa , Agua , Solventes
13.
Talanta ; 255: 124250, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36610256

RESUMEN

Non-targeted analysis of chemical hazards in foods plays a crucial role in controlling food safety. However, because it brings forward high demand for sample pretreatment, materials suitable for the pretreatment of foods, especially animal foods, are rare. Herein, covalent organic frameworks (COF)-based monolithic materials were constructed by three successive steps: preparation of polydimethylsiloxane (PDMS) sponge using sugar cube as a sacrificial template, loading of a heteroporous COF on PDMS sponge via ultrasonic or in-situ growth method, coating of the obtained PDMS@COF by polydopamine (PDA) network. As-prepared PDMS@COF@PDA sponges were demonstrated to work well in sample pretreatment of animal foods for non-targeted analysis of chemical hazards. After a simple vortex treatment for about 2 min, more than 98% triglycerides, the main interfering matrix components in animal foods, could be removed from lard and pork samples, accompanied by "full recovery" (recovery efficiencies: ≥63%) of 44 chemical hazards with different physicochemical properties. Besides providing promising sample pretreatment materials for non-targeted food safety analysis, this work also paves a feasible way to improve COF-based monolithic materials and thus promote their practical applications, because we found that the introduction of PDA network on COF-based monolithic material surface could play a role in "killing three birds with one stone": enhancing the stability of the materials by overcoming the detachment of COF during operations; controllably adjusting hydrophobic and hydrogen-bonding interactions on the material surface to promote the removal of triglycerides; weakening the hydrophobic and π-π interactions between COF and chemical hazards to increase the recoveries of chemical hazards.


Asunto(s)
Estructuras Metalorgánicas , Animales , Estructuras Metalorgánicas/química , Alimentos
14.
Am J Transl Res ; 14(10): 7362-7377, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36398217

RESUMEN

OBJECTIVES: Small interfering RNA (siRNA) that silences specific disease-related genes holds the promise for the treatment of renal disease. However, delivery to the intended site of action remains a major obstacle. The goal of this study was to develop glomerulus-specific siRNA particles for targeted gene therapy of kidney diseases. METHODS: We used a novel nanoparticle-based system comprised of siRNA in cationic liposomes (Lip) coated with non-inhibitory plasminogen activator inhibitor 1R (PAI-1R) that selectively targets glomerular cells and tested it with transforming growth factor-beta 1 (TGF-ß1)-siRNA in nephritic rat model. RESULTS: At the optimized ratio of components, three of PAI-1R, Lip and siRNA formed the compact nanostructured particles with close to neutral surface charge (+5.63 ± 1.45 mV) and relatively uniform size (68.9 ± 4.73 nm). When the fluorescence-conjugated siRNA was used, the labeled siRNA nanoparticles appeared specifically in glomeruli. Targeted delivery of siRNA specific to the TGFß1 gene reduced elevated TGFß1 mRNA expression and protein production in glomeruli, but had no effect on TGFß1 mRNA levels in lung, spleen, artery or renal medulla, and in nephritic rats induced by injection of OX-7, for up to 5 days. PAI-1R-Lip-TGF-ß1 siRNA administration significantly reduced increases in glomerular matrix accumulation and expression of PAI-1 and fibronectin. CONCLUSIONS: We conclude that a single dose of PAI-1R-Lip-TGF-ß1 siRNA inhibited glomerular TGF-ß1 gene expression thereby ameliorating glomerulosclerosis specifically and efficiently in nephritic rats without affecting most of other organs. The target silencing of genes critical for glomerular diseases may represent a promising treatment strategy for kidney disease.

15.
Chem Sci ; 13(35): 10395-10405, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36277631

RESUMEN

The separation and detection of circulating tumor cells (CTCs) have a significant impact on clinical diagnosis and treatment by providing a predictive diagnosis of primary tumors and tumor metastasis. But the responsive release and downstream analysis of live CTCs will provide more valuable information about molecular markers and functional properties. To this end, specific capture and controllable release methods, which can achieve the highly efficient enrichment of CTCs with strong viability, are urgently needed. DNA networks create a flexible, semi-wet three-dimensional (3D) microenvironment for cell culture, and have the potential to minimize the loss of cell viability and molecular integrity. More importantly, responsive DNA networks can be reasonably designed as smart sensors and devices to change shape, color, disassemble, and giving back to external stimuli. Here, a strategy for specifically collecting cells using a dual-aptamer DNA network is designed. The proposed strategy enables effective capture, 3D encapsulation, and responsive release of CTCs with strong viability, which can be used for downstream analysis of live cells. The programmability of CRISPR/Cas12a, a powerful toolbox for genome editing, is used to activate the responsive release of captured CTCs from the DNA network. After activation by a specified double-strand DNA (dsDNA) input, CRISPR/Cas12a cleaves the single-stranded DNA regions in the network, resulting in molecular to macroscopic changes in the network. Accompanied by the deconstruction of the DNA network into fragments, controllable cell release is achieved. The viability of released CTCs is well maintained and downstream cell analysis can be performed. This strategy uses the enzymatic properties of CRISPR/Cas12a to design a platform to improve the programmability and versatility of the DNA network, providing a powerful and effective method for capturing and releasing CTCs from complex physiological samples.

16.
Anal Chem ; 94(22): 8050-8057, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35615910

RESUMEN

The trans-cleavage activity of CRISPR/Cas12a has been widely used in biosensing applications. However, the lack of exploration on the fundamental properties of CRISPR/Cas12a not only discourages further in-depth studies of the CRISPR/Cas12a system but also limits the design space of CRISPR/Cas12a-based applications. Herein, a "RESET" effect (random extending sequences enhance trans-cleavage activity) is discovered for the activation of CRISPR/Cas12a trans-cleavage activity. That is, a single-stranded DNA, which is too short to work as the activator, can efficiently activate CRISPR/Cas12a after being extended a random sequence from its 3'-end, even when the random sequence folds into secondary structures. The finding of the "RESET" effect enriches the CRISPR/Cas12a-based sensing strategies. Based on this effect, two CRISPR/Cas12a-based biosensors are designed for the sensitive and specific detection of two biologically important enzymes.


Asunto(s)
Técnicas Biosensibles , Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , ADN de Cadena Simple/genética
17.
Chem Sci ; 13(15): 4364-4371, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35509467

RESUMEN

Besides gene-editing, the CRISPR/Cas12a system has also been widely used in in vitro biosensing, but its applications in live-cell biosensing are rare. One reason is lacking appropriate carriers to synchronously deliver all components of the CRISPR/Cas12a system into living cells. Herein, we demonstrate that MnO2 nanosheets are an excellent carrier of CRISPR/Cas12a due to the two important roles played by them. Through a simple mixing operation, all components of the CRISPR/Cas12a system can be loaded on MnO2 nanosheets and thus synchronously delivered into cells. Intracellular glutathione (GSH)-induced decomposition of MnO2 nanosheets not only results in the rapid release of the CRISPR/Cas12a system in cells but also provides Mn2+ as an accelerator to promote CRISPR/Cas12a-based biosensing of intracellular targets. Due to the merits of highly efficient delivery, rapid intracellular release, and the accelerated signal output reaction, MnO2 nanosheets work better than commercial liposome carriers in live-cell biosensing analysis of survivin messenger RNA (mRNA), producing much brighter fluorescence images in a shorter time. The use of MnO2 nanosheets might provide a good carrier for different CRISPR/Cas systems and achieve the rapid and sensitive live-cell biosensing analysis of different intracellular targets, thus paving a promising way to promote the applications of CRISPR/Cas systems in living cells.

19.
Chem Asian J ; 17(5): e202101315, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34989140

RESUMEN

Molecular self-assembly is widely used in the fields of biosensors, molecular devices, efficient catalytic materials, and medical biomaterials. As the carrier of genetic information, DNA is a kind of biomacromolecule composed of deoxyribonucleotide units. DNA nanotechnology extends DNA of its original properties as a molecule that stores and transmits genetic information from its biological environment by taking advantage of its unique base pairing and inherent biocompatibility to produce structurally-defined supramolecular structures. With the continuously development of DNA technology, the assembly method of DNA nanostructures is not only limited on the basis of DNA hybridization but also other biochemical interactions. In this review, we summarize the latest methods used to construct higher-order DNA structures. The problems of DNA nanostructures are discussed and the future directions in this field are provided.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Emparejamiento Base , ADN/química , Nanoestructuras/química , Nanotecnología
20.
Talanta ; 236: 122829, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34635219

RESUMEN

The successful application of covalent organic frameworks (COFs) depends on not only their unique chemical structures but also their morphology, size, and architecture. Spherical COFs (SCOFs) are attracted special attention due to the superiority of spherical materials in many applications. However, the synthesis of uniform large-sized SCOFs remains a challenge. Herein, by carefully optimizing the synthesis of a heteropore COF, we find that solvent type and catalyst concentration play important roles in determining the morphology and size of COFs, and eventually achieve the controllable synthesis of large SCOFs with uniform sizes ranging from 200 µm to 5 mm. The obtained SCOFs keep the dual-pore feature of the heteropore COF and show good stability and high crystallinity. To exhibit the superior application potential of SCOFs, the SCOFs with a size range of 200-300 µm were demonstrated to be promising solid-phase extraction (SPE) fillers. As-prepared SCOFs-packed SPE column could effectively remove ≥99% phytochrome matrix from 6 different vegetable samples in 10 s, accompanied by 72.56-112.37% recoveries of 33 chemical hazards with different physicochemical properties, thus showing greatly promising application prospects in sample pretreatment of nontargeted food safety analysis. By utilizing acid/base-adjusted reversible color change, millimeter-sized SCOFs were developed as an easy-to-operate and reusable naked-eye indicator of acids.


Asunto(s)
Estructuras Metalorgánicas , Catálisis , Extracción en Fase Sólida , Verduras
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA