Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Org Chem ; 83(3): 1176-1184, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29272119

RESUMEN

In this article we report on the mechanistic studies of the Michael addition of amines and hydrazines to nitrostyrenes. Under the present conditions, the corresponding N-alkyl/aryl substituted benzyl imines and N-methyl/phenyl substituted benzyl hydrazones were observed via a retro-aza-Henry-type process. By combining organic synthesis and characterization experiments with computational chemistry calculations, we reveal that this reaction proceeds via a protic solvent-mediated mechanism. Experiments in deuterated methanol CD3OD reveal the synthesis and isolation of the corresponding deuterated intermediated Michael adduct, results that support the proposed slovent-mediated pathway. From the synthetic point of view, the reaction occurs under mild, noncatalytic conditions and can be used as a useful platform to yield the biologically important N-methyl pyrazoles in a one-pot manner, simple starting with the corresponding nitrostyrenes and the methylhydrazine.

2.
J Am Chem Soc ; 137(50): 15852-8, 2015 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-26670347

RESUMEN

We report the identification, description, and role of multinuclear metal-thiolate complexes in aqueous Au-Cu nanoparticle syntheses. The structure of these species was characterized by nuclear magnetic resonance spectroscopy, mass spectrometry, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy techniques. The observed structures were found to be in good agreement with thermodynamic growth trends predicted by first-principles calculations. The presence of metal-thiolate complexes is then shown to be critical for the formation of alloyed Au-Cu architectures in the small nanoparticle regime (diameter ∼2 nm). In the absence of mixed metal-thiolate precursors, nanoparticles form with a Cu-S shell and a Au-rich interior. Taken together, these results demonstrate that prenucleation species, which are discrete molecular precursors distinct from both initial reagents and final particle products, may provide an important new synthetic route to control final metal nanoparticle composition and composition architectures.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA