Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124728, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38955070

RESUMEN

A spectrophotometric method for the quantitative determination of nitrite was developed, based on the radical nitration of indopolycarbocyanine dyes in the presence of 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO). The rate of the reaction of the studied dyes with nitrite increases with the lengthening of the polymethine chain and the presence of hydrophilic sulfo groups in the side chain of the dye. TEMPO acts as a co-reagent, significantly accelerating the reaction rate and increasing the sensitivity of nitrite determination. The proposed reaction mechanism is supported by spectrophotometric and HPLC/MS studies. For Ind2 (tetramethine indocarbocyanine cationic dye), the limit of detection for nitrite is 0.50 µM within a linearity range of 1-13 µM. The developed method is sensitive, with a LOD 130 times lower than the maximum contaminant level (MCL) of nitrite in drinking water (65 µM), as specified by the WHO. The method is of low-toxicity and good selectivity, as the determination of nitrite is not significantly affected by the main components of water. The method was successfully applied for the analysis of nitrite in natural and bottled water.

2.
Chem Rec ; 24(2): e202300194, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37737456

RESUMEN

Sol-gel-derived silica thin films generated onto electrode surfaces in the form of organic-inorganic hybrid coatings or other composite layers have found tremendous interest for being used as platforms for the development of electrochemical sensors and biosensors. After a brief description of the strategies applied to prepare such materials, and their interest as electrode modifier, this review will summarize the major advances made so far with composite silica-based films in electroanalysis. It will primarily focus on electrochemical sensors involving both non-ordered composite films and vertically oriented mesoporous membranes, the biosensors exploiting the concept of sol-gel bioencapsulation on electrode, the spectroelectrochemical sensors, and some others.

3.
Biosens Bioelectron ; 225: 115106, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36738732

RESUMEN

The hydrogen-based economy will require not only sustainable hydrogen production but also sensitive and cheap hydrogen sensors. Commercially available H2 sensors are limited by either use of noble metals or elevated temperatures. In nature, hydrogenase enzymes present high affinity and selectivity for hydrogen, while being able to operate in mild conditions. This study aims at evaluating the performance of an electrochemical sensor based on carbon nanomaterials with immobilised hydrogenase from the hyperthermophilic bacterium Aquifex aeolicus for H2 detection. The effect of various parameters, including the surface chemistry, dispersion degree and amount of deposited carbon nanotubes, enzyme concentration, temperature and pH on the H2 oxidation are investigated. Although the highest catalytic response is obtained at a temperature around 60 °C, a noticeable current can be obtained at room temperature with a low amount of protein less than 1 µM. An original pulse-strategy to ensure H2 diffusion to the bioelectrode allows to reach H2 sensitivity of 4 µA cm-2 per % H2 and a linear range between 1 and 20%. Sustainable hydrogen was then produced through dark fermentation performed by a synthetic bacterial consortium in an up-flow anaerobic packed-bed bioreactor. Thanks to the outstanding properties of the A. aeolicus hydrogenase, the biosensor was demonstrated to be quite insensitive to CO2 and H2S produced as the main co-products of the bioreactor. Finally, the bioelectrode was used for the in situ measurement of H2 produced in the bioreactor in steady-state.


Asunto(s)
Técnicas Biosensibles , Hidrogenasas , Nanotubos de Carbono , Fermentación , Hidrogenasas/química , Hidrogenasas/metabolismo , Hidrógeno/química , Reactores Biológicos , Oxidación-Reducción , Bacterias/metabolismo , Electrodos
4.
J Org Chem ; 85(5): 3110-3124, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-31928000

RESUMEN

Diverse trifluoromethyl-substituted compounds were synthesized by deoxofluorination of cinnamic and (hetero)aromatic carboxylic acids with sulfur tetrafluoride. The obtained products were used as starting materials in the preparation of novel fluorinated amino acids, anilines, and aliphatic amines - valuable building blocks for medicinal chemistry and agrochemistry.

5.
Langmuir ; 27(11): 7140-7, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21542639

RESUMEN

The modification of platinum nanofibers by silica using the electrochemically-assisted deposition is reported here. Pt nanofibers are obtained by electrospinning and deposited on a glass substrate. The electrochemically-assisted deposition of the sol-gel material then gives the unique possibility to finely tune the silica film thickness around these nanofibers. It also allows the successful encapsulation of a biomolecule (glucose oxidase was chosen here as a model) while retaining its biological activity, as pointed out via the electrochemical monitoring of H(2)O(2) produced upon addition of glucose in the medium. This silica-glucose oxidase composite offers the possibility of comparing systematically the influence of the deposition time on the bioelectrode response and to compare it with the particular features of the deposits. It was found that the film first grew uniformly around the nanofibers and then started to deposit between them, covering the whole sample (fibers and glass substrate), and tended to fully embed the nanofibers for prolonged deposition. The thickness of the silica film is critical for the electroactivity of the biocomposite, the best response being obtained for a silica layer thickness in the range of the fiber diameter (∼50 nm).


Asunto(s)
Nanofibras/química , Nanotecnología/métodos , Platino (Metal)/química , Aspergillus niger/enzimología , Electroquímica , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , Glucosa Oxidasa/química , Glucosa Oxidasa/metabolismo , Dióxido de Silicio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA