Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Pharmacol ; 13: 918219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814206

RESUMEN

Background: Anlotinib is a small molecular multi-targeting tyrosine kinase inhibitor. Growing evidence indicates that treatment efficacy, and toxicity varies considerably between individuals. Therefore, this study aimed to investigate the relationship between cytochrome P450 (CYP450) gene polymorphisms, drug concentrations, and their adverse reactions in anlotinib-treated patients with lung cancer. Methods: We enrolled 139 patients with lung cancer, treated with anlotinib. Twenty loci in the following five genes of the CYP450 family were genotyped: CYP450 family 3 subfamily A member 5 (CYP3A5), 3 subfamily A member 4 (CYP3A4), 2 subfamily C member 9 (CYP2C9), 2 subfamily C member 19 (CYP2C19), and 1 subfamily A member 2 (CYP1A2). Data on adverse reactions were collected from patients, and plasma anlotinib concentrations were measured. Results: There were significant variances in plasma trough concentration (3.95-52.88 ng/ml) and peak plasma concentration (11.53-42.8 ng/ml) following administration of 8 mg anlotinib. Additionally, there were significant differences in the plasma trough concentration (5.65-81.89 ng/ml) and peak plasma concentration (18.01-107.18 ng/ml) following administration of 12 mg anlotinib. Furthermore, for CYP2C19-rs3814637, the peak plasma concentrations of mutant allele T carriers (TT+CT) were significantly higher than those of wildtypes (CC). For CYP2C19-rs11568732, the peak plasma concentrations of the mutant allele G carriers (GT+GG) were significantly higher than those of the wild-type (TT). More importantly, the incidence rates of hypertension and hemoptysis (peripheral lung cancer) with TT+CT in rs3814637 and GT+GG in rs11568732 were significantly higher than those with CC and TT. Conclusions: The plasma trough and peak concentrations varied significantly for both 8 and 12 mg of anlotinib. Single-nucleotide polymorphisms in CYP2C19 are significantly associated with hypertension, hemoptysis, and anlotinib peak concentrations. Polymorphisms in CYP450 may explain inter-individual differences in anlotinib-related adverse reactions.

2.
Drug Deliv ; 29(1): 692-701, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35225122

RESUMEN

Macrophages can transform into M1 (pro-inflammatory) and M2 (anti-inflammatory) phenotypes, which mediate the immune/inflammatory response in rheumatoid arthritis (RA). Activated M1 phenotype macrophages and overexpression of folate (FA) receptors are abundant in inflammatory synovium and joints and promote the progression of RA. Germacrone (GER) can regulate the T helper 1 cell (Th1)/the T helper 2 cell (Th2) balance to delay the progression of arthritis. To deliver GER to inflammatory tissue cells to reverse M1-type proinflammatory cells and reduce inflammation, FA receptor-targeting nanocarriers loaded with GER were developed. In activated macrophages, FA-NPs/DiD showed significantly higher uptake efficiency than NPs/DiD. In vitro experiments confirmed that FA-NPs/GER could promote the transformation of M1 macrophages into M2 macrophages. In adjuvant-induced arthritis (AIA) rats, the biodistribution profiles showed selective accumulation at the inflammatory site of FA-NPs/GER, and significantly reduced the swelling and inflammation infiltration of the rat's foot. The levels of pro-inflammatory cytokines (TNF-α, IL-1ß) in the rat's inflammatory tissue were significantly lower than other treatment groups, which indicated a significant therapeutic effect in AIA rats. Taken together, macrophage-targeting nanocarriers loaded with GER are a safe and effective method for the treatment of RA.


Asunto(s)
Artritis Reumatoide , Nanopartículas , Animales , Artritis Reumatoide/inducido químicamente , Artritis Reumatoide/tratamiento farmacológico , Macrófagos , Ratas , Sesquiterpenos de Germacrano , Distribución Tisular
3.
BMC Med Genomics ; 15(1): 23, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35135554

RESUMEN

BACKGROUND: Hydroxychloroquine (HCQ) is a cornerstone therapy for systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). This study aimed to investigate the relationship of cytochrome P450 (CYP450) gene polymorphisms with blood concentrations of HCQ and its metabolites and adverse drug reactions (ADRs) in patients with SLE and RA. METHODS: A cohort of 146 patients with SLE and RA treated with HCQ was reviewed. The ADRs of the patients were recorded. The blood concentrations of HCQ and its metabolites were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Genotyping of single nucleotide polymorphisms (SNPs) in CYP450, a metabolic enzyme involved in the HCQ metabolic pathway, was performed using a MassARRAY system. The chi-square test, T-test, and one-way analysis of variance were used to analyse data. RESULTS: Among 29 candidate SNPs, we found that CYP3A4 (rs3735451) was significantly associated with blood levels of HCQ and its metabolites in both the unadjusted model and adjusted model (patients taking HCQ for > 10 years) (P < 0.05). For CYP3A5 (rs776746), a greater risk of skin and mucous membrane ADRs was associated with the TT genotype than with the CT + CC genotypes (P = 0.033). For CYP2C8 (rs1058932), the AG genotype carried a greater risk of abnormal renal function than the AA + GG genotype (P = 0.017); for rs10882526, the GG genotype carried a greater risk of ophthalmic ADRs than the AA + AG genotypes (P = 0.026). CONCLUSIONS: The CYP2C8 (rs1058932 and rs10882526) and CYP3A5 (rs776746) polymorphisms are likely involved in the ADRs of HCQ. Gene polymorphism analysis of CYP450 and therapeutic drug monitoring of HCQ and its metabolites might be useful to optimise HCQ administration and predict ADRs.


Asunto(s)
Antirreumáticos , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Lupus Eritematoso Sistémico , Antirreumáticos/uso terapéutico , Cromatografía Liquida , Sistema Enzimático del Citocromo P-450/genética , Humanos , Hidroxicloroquina/efectos adversos , Lupus Eritematoso Sistémico/tratamiento farmacológico , Lupus Eritematoso Sistémico/genética , Polimorfismo de Nucleótido Simple , Espectrometría de Masas en Tándem
4.
Drug Deliv ; 29(1): 75-88, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34964421

RESUMEN

Breast cancer is one of the most common types of cancer in female patients with high morbidity and mortality. Multi-drug chemotherapy has significant advantages in the treatment of malignant tumors, especially in reducing drug toxicity, increasing drug sensitivity and reducing drug resistance. The objective of this research is to fabricate lipid nanoemulsions (LNs) for the co-delivery of PTX and docosahexaenoic acid (DHA) with folic acid (FA) decorating (PTX/DHA-FA-LNs), and investigate the anti-tumor activity of the PTX/DHA-FA-LNs against breast cancer both in vitro and in vivo. PTX/DHA-FA-LNs showed a steady release of PTX and DHA from the drug delivery system (DDS) without any burst effect. Furthermore, the PTX/DHA-FA-LNs exhibited a dose-dependent cytotoxicity and a higher rate of apoptosis as compared with the other groups in MCF-7 cells. The cellular uptake study revealed that this LNs were more readily uptaken by MCF-7 cells and M2 macrophages in vitro. Additionally, the targeted effect of PTX/DHA-FA-LNs was aided by FA receptor-mediated endocytosis, and its cytotoxicity was proportional to the cellular uptake efficiency. The anti-tumor efficiency results showed that PTX/DHA-FA-LNs significant inhibited tumor volume growth, prolonged survival time, and reduced toxicity when compared with the other groups. These results indicated that DHA increases the sensitivity of tumor cells and tumor-associated macrophages (ATM2) to PTX, and synergistic effects of folate modification in breast cancer treatment, thus PTX/DHA-FA-LNs may be a promising nanocarrier for breast cancer treatment.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Portadores de Fármacos/química , Nanopartículas/química , Paclitaxel/análogos & derivados , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Liberación de Fármacos , Emulsiones/química , Femenino , Ácido Fólico/química , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Paclitaxel/administración & dosificación , Paclitaxel/farmacología , Células RAW 264.7 , Macrófagos Asociados a Tumores/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Front Oncol ; 10: 537322, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33244453

RESUMEN

Germacrone, a monocyclic sesquiterpene, exerts marked antitumor effects in a variety of cancers, including hepatocellular carcinoma, gastric cancer, and breast cancer. However, the mechanism underlying the effects of germacrone on gastric cancer remains unclear. In this study, we show that germacrone inhibited gastric cancer cell proliferation in a dose-dependent manner, and induced G0/G1-phase cell cycle arrest and apoptosis in these cells. Moreover, germacrone increased the expression of LC3II/LC3I. And LC3II/LC3I was significant increased after germacrone treatment compared with germacrone and bafilomycin A1 (Baf A1) treatment, which suggested germacrone promoted the formation of autophagosomes. Proteomic analysis was then used to identify molecular targets of germacrone in gastric cancer. A total of 596 proteins were screened, and the top hit was identified as late endosomal/lysosomal adaptor and MAPK and MTOR activator 5 (LAMTOR5, also named HBXIP). Overexpression of HBXIP delayed the germacrone-induced cell cycle arrest, induction of apoptosis, and inhibition of autophagy. Combined, our results indicate that germacrone suppresses gastric cancer cell proliferation by inhibiting HBXIP, and this process is related to G0/G1-phase arrest and apoptosis.

6.
Int J Nanomedicine ; 15: 1915-1928, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32256068

RESUMEN

BACKGROUND: Melanoma is the most common symptom of aggressive skin cancer, and it has become a serious health concern worldwide in recent years. The metastasis rate of malignant melanoma remains high, and it is highly difficult to cure with the currently available treatment options. Effective yet safe therapeutic options are still lacking. Alternative treatment options are in great demand to improve the therapeutic outcome against advanced melanoma. This study aimed to develop albumin nanoparticles (ANPs) coated with macrophage plasma membranes (RANPs) loaded with paclitaxel (PTX) to achieve targeted therapy against malignant melanoma. METHODS: Membrane derivations were achieved by using a combination of hypotonic lysis, mechanical membrane fragmentation, and differential centrifugation to empty the harvested cells of their intracellular contents. The collected membrane was then physically extruded through a 400 nm porous polycarbonate membrane to form macrophage cell membrane vesicles. Albumin nanoparticles were prepared through a well-studied nanoprecipitation process. At last, the two components were then coextruded through a 200 nm porous polycarbonate membrane. RESULTS: Using paclitaxel as the model drug, PTX-loaded RANPs displayed significantly enhanced cytotoxicity and apoptosis rates compared to albumin nanoparticles without membrane coating in the murine melanoma cell line B16F10. RANPs also exhibited significantly higher internalization efficiency in B16F10 cells than albumin nanoparticles without a membrane coating. Next, a B16F10 tumor xenograft mouse model was established to explore the biodistribution profiles of RANPs, which showed prolonged blood circulation and selective accumulation at the tumor site. PTX-loaded RANPs also demonstrated greatly improved antitumor efficacy in B16F10 tumor-bearing mouse xenografts. CONCLUSION: Albumin-based nanoscale delivery systems coated with macrophage plasma membranes offer a highly promising approach to achieve tumor-targeted therapy following systemic administration.


Asunto(s)
Albúminas/química , Macrófagos/citología , Melanoma Experimental/tratamiento farmacológico , Nanopartículas/administración & dosificación , Paclitaxel/administración & dosificación , Animales , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/farmacocinética , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Membrana Celular/química , Femenino , Humanos , Macrófagos/patología , Melanoma Experimental/patología , Ratones , Ratones Endogámicos C57BL , Nanopartículas/química , Paclitaxel/farmacocinética , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA