Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Neurosurg Focus ; 53(6): E8, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36455280

RESUMEN

OBJECTIVE: Infection is one of the important and frequent complications following implantable pulse generator and deep brain stimulation (DBS) electrode insertion. The goal of this study was to retrospectively evaluate and identify potential risk factors for DBS infections. METHODS: From January 2015 to January 2021 in Qingdao municipal hospital (training cohort) and The First Affiliated Hospital of the University of Science and Technology of China (validation cohort), the authors enrolled patients with Parkinson disease who had undergone primary DBS placement or implantable pulse generator replacement. The cases were divided into infection or no-infection groups according to the 6-month follow-up. The authors used the logistic regression models to determine the association between the variables and DBS infection. Depending on the results of logistic regression, the authors established a nomogram. The calibration curves, receiver operating characteristic curve analysis, and decision curves were used to evaluate the reliability of the nomogram. RESULTS: There were 191 cases enrolled in the no-infection group and 20 cases in the infection group in the training cohort. The univariate logistic regression showed that BMI, blood glucose, and albumin were all significant predictors of infection after DBS surgery (OR 0.832 [p = 0.009], OR 1.735 [p < 0.001], and OR 0.823 [p = 0.001], respectively). In the crude, adjust I, and adjust II models, the three variables stated above were all considered to be significant predictors of infection after DBS surgery. The calibration curves in both training and validation cohorts showed that the predicted outcome fitted well to the observed outcome (p > 0.05). The decision curves showed that the nomogram had more benefits than the "All or None" scheme. The areas under the curve were 0.93 and 0.83 in the training and validation cohorts, respectively. CONCLUSIONS: The nomogram included BMI, blood glucose, and albumin, which were significant predictors of infection in patients with DBS surgery. The nomogram was reliable for clinical application.


Asunto(s)
Estimulación Encefálica Profunda , Nomogramas , Humanos , Glucemia , Estimulación Encefálica Profunda/efectos adversos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Albúminas
2.
Oncol Lett ; 20(4): 122, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32863935

RESUMEN

The aim of the present study was to investigate the effect of dihydrotanshinone I (DHI) on the survival of human glioma cells and the expression levels of ferroptosis-associated proteins. Human U251 and U87 glioma cells were cultured in vitro and treated with different concentrations of DHI and/or the ferroptosis inhibitor ferrostatin-1. A Cell Counting Kit-8 assay was used to determine the cell survival rate. The cells were further analyzed to determine their 5-, 12- and 15-hydroxyeicosatetraenoic acid (HETE), lactate dehydrogenase (LDH) and malondialdehyde (MDA) levels, and reduced glutathione (GSH)/oxidized glutathione (GSSG) ratios. Western blotting was used to detect ferroptosis-associated glutathione peroxidase 4 (GPX4) and long-chain acyl-CoA synthetase 4 (ACSL-4). Changes in the mitochondrial membrane potential (MMP) were also observed using tetramethylrhodamine methyl ester staining and confocal fluorescence microscopy. The results revealed that DHI inhibited the proliferation of human glioma cells. Following treatment of the U251 and U87 cells with DHI, changes in the expression levels of ferroptosis-associated proteins were observed; the expression level of GPX4 decreased and that of ACSL-4 increased. DHI also increased the levels of LDH and MDA in the human glioma cells and reduced the GSH/GSSG ratio. The DHI-treated cells also exhibited a marked reduction in MMP. Furthermore, ferrostatin-1 blocked the DHI-induced effects in human glioma cells. From these results, it may be concluded that DHI inhibits the proliferation of human glioma cells via the induction of ferroptosis.

3.
Eur J Haematol ; 78(5): 432-9, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17331135

RESUMEN

OBJECTIVE: To investigate whether an optimization of MDR1 gene transfer protocol would result in stable hematopoietic stem cell (HSC) engraftment and myeloprotection in non-obese diabetic/severe combined immunodeficient (NOD/SCID) mice after paclitaxel chemotherapy. METHODS: We transplanted freshly isolated CD34+ cells or MDR1-transduced CD34+ cells derived from human umbilical cord blood (UCB) into sublethally irradiated NOD/SCID mice. Twenty-eight days after transplantation, mice received paclitaxel chemotherapy and peripheral blood (PB) was collected for analysis of WBC, RBC and PLT counts once every week. RESULTS: We found that MDR1-transduced human hematopoietic cells could facilitate hematopoietic recovery and completely reconstitute hematopoiesis in mice as well as freshly isolated CD34+ cells. Mice transplanted with MDR1-transduced human hematopoietic cells were protected from paclitaxel chemotherapy with higher survival rate and higher level of WBC counts and RBC counts compared with mice transplanted with untransduced HSCs. We also demonstrated that hematopoietic cells transduced with MDR1 gene were enriched in vivo after paclitaxel chemotherapy determined by the higher percentage of human Rh-123(dull) CD45+ cells in bone marrow of mice. CONCLUSION: Our results demonstrated successful chemoprotection against myelosuppression in mice by MDR1-transduced repopulating human hematopoietic cells with an optimized transduction protocol.


Asunto(s)
Antineoplásicos Fitogénicos/toxicidad , Células de la Médula Ósea/efectos de los fármacos , Sangre Fetal/trasplante , Técnicas de Transferencia de Gen , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/genética , Paclitaxel/toxicidad , Animales , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA