Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 59(28): 4177-4180, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-36942825

RESUMEN

Sodium phenoxide is a potentially promising hydrogen storage material due to its high hydrogen capacity and enhanced thermodynamic properties. Nevertheless, efficient catalysts are still lacking due to the high kinetic barrier for the reversible hydrogen uptake and release of sodium phenoxide. In the current work, a comparative study on the catalytic hydrogenation of sodium phenoxide was conducted. To our delight, a simple yet effective ruthenium-based catalyst was identified to respond aggressively to hydrogen in the solid-state hydrogenation of sodium phenoxide even at room temperature. The activity was enhanced by 6 fold with the as-synthesized 5.0% Ru/TiO2 catalyst as compared to that with commercial 5.0% Ru/Al2O3, respectively, under the same conditions.

2.
Materials (Basel) ; 16(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36676604

RESUMEN

Hydrazine borane (HB) is a chemical hydrogen storage material with high gravimetric hydrogen density of 15.4 wt%, containing both protic and hydridic hydrogen. However, its limitation is the formation of unfavorable gaseous by-products, such as hydrazine (N2H4) and ammonia (NH3), which are poisons to fuel cell catalyst, upon pyrolysis. Previous studies proved that confinement of ammonia borane (AB) greatly improved the dehydrogenation kinetics and thermodynamics. They function by reducing the particle size of AB and establishing bonds between silica functional groups and AB molecules. In current study, we employed the same strategy using MCM-41 and silica aerogel to investigate the effect of nanosizing towards the hydrogen storage properties of HB. Different loading of HB to the porous supports were investigated and optimized. The optimized loading of HB in MCM-41 and silica aerogel was 1:1 and 0.25:1, respectively. Both confined samples demonstrated great suppression of melting induced sample foaming. However, by-products formation was enhanced over dehydrogenation in an open system decomposition owing to the presence of extensive Si-O···BH3(HB) coordination that further promote the B-N bond cleavage to release N2H4. The Si-OH···N(N2H4) hydrogen bonding may further promote N-N bond cleavage in the resulting N2H4, facilitating the formation of NH3. As temperature increases, the remaining N-N-B oligomeric chains in the porous silica, which are lacking the long-range structure may further undergo intramolecular B-N or N-N cleavage to release substantial amount of N2H4 or NH3. Besides open system decomposition, we also reported a closed system decomposition where complete utilization of the N-H from the released N2H4 and NH3 in the secondary reaction can be achieved, releasing mainly hydrogen upon being heated up to high temperatures. Nanosizing of HB particles via PMMA encapsulation was also attempted. Despite the ester functional group that may favor multiple coordination with HB molecules, these interactions did not impart significant change towards the decomposition of HB selectively towards dehydrogenation.

3.
ACS Appl Mater Interfaces ; 14(36): 41095-41102, 2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36050875

RESUMEN

The development of ionic conductors as solid-state electrolytes to replace the widely used liquid electrolytes could effectively solve the safety issues as well as enhance the energy density of batteries. Yet no ionic conductors to date could meet all the criteria of solid-state electrolytes for practical applications. Therefore, exploration of new materials is highly demanded. Herein, a new type of metalorganic-based materials, namely, lithium indolide and its tetrahydrofuran (THF)-coordinated derivatives, are developed and employed as fast ionic conductors. Their crystal structures are also determined. Particularly, the lithium indolide ditetrahydrofuran shows ionic conductivities of 6.28 × 10-6 and 8.27 × 10-4 S cm-1 at 110 and 150 °C, respectively. A "neutral ligand-assisted" cation migration mechanism is proposed, where the migration of Li+ may be facilitated by the dynamic equilibrium of the neutral ligand and the large sized anions. The present idea of using metalorganic compounds coordinated with neutral ligands for fast ionic conductors provides vast opportunities for discovering new solid-state electrolytes in the future thanks to the rich chemistry of organic anions and ligands.

4.
J Phys Chem Lett ; 12(43): 10646-10653, 2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34704756

RESUMEN

Fabrication of sufficient oxygen vacancies and exposure of active sites to reactants are two key factors to obtain high catalytic activity in the water-gas shift (WGS) reaction. However, these two factors are hard to satisfy spontaneously, since the formation of oxygen vacancies and encapsulation of metal nanoparticles are two inherent properties in reducible metal oxide supported catalysts due to the strong metal-support interaction (SMSI) effect. In this work, we find that addition of alkali to an anatase supported Ni catalyst (Ni/TiO2(A)) could well regulate the SMSI to achieve both more oxygen vacancies and depression of encapsulation; therefore, more than 20-fold enhancement in activity is obtained. It is found that the in situ formed titanate species on the catalyst surface is crucial to the formation of oxygen vacancies and depression of encapsulation. Furthermore, the methanation, a common side reaction of the WGS reaction, is successfully suppressed in the whole catalytic process.

5.
Chem Commun (Camb) ; 56(13): 1944-1947, 2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-31967625

RESUMEN

The lack of efficient hydrogen storage material is one of the bottlenecks for the large-scale implementation of hydrogen energy. Here, a series of new hydrogen storage materials, i.e., anilinide-cyclohexylamide pairs, are proposed via the metallation of an aniline-cyclohexylamine pair. DFT calculations show that the enthalpy change of hydrogen desorption (ΔHd) can be significantly tuned from 60.0 kJ per mol-H2 for the pristine aniline-cyclohexylamine pair to 42.2 kJ per mol-H2 for sodium anilinide-cyclohexylamide and 38.7 kJ per mol-H2 for potassium anilinide-cyclohexylamide, where an interesting correlation between the electronegativity of the metal and the ΔHd was observed. Experimentally, the sodium anilinide-cyclohexylamide pair was successfully synthesised with a theoretical hydrogen capacity of 4.9 wt%, and the hydrogenation and dehydrogenation cycle can be achieved at a relatively low temperature of 150 °C in the presence of commercial catalysts, in clear contrast to the pristine aniline-cyclohexylamine pair which undergoes dehydrogenation at elevated temperatures.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38915425

RESUMEN

Storing hydrogen efficiently in condensed materials is a key technical challenge. Tremendous efforts have been given to inorganic hydrides containing B-H, Al-H and/or N-H bonds, while organic compounds with a great variety and rich chemistry in manipulating C-H and unsaturated bonds, however, are undervalued mainly because of their unfavourable thermodynamics and selectivity in dehydrogenation. Here, we developed a new family of hydrogen storage material spanning across the domain of inorganic and organic hydrogenous compounds, namely metallo-N-heterocycles, utilizing the electron donating nature of alkali or alkaline earth metals to tune the electron densities of N-heterocyclic molecules to be suitable for hydrogen storage in terms of thermodynamic properties. Theoretical calculations reveal that the enthalpies of dehydrogenation (ΔHd) of these metallo-N-heterocycles are dependent on the electronegativity of the metals. In line with our calculation results, sodium and lithium analogues of pyrrolides, imidazolides and carbazolides of distinct structures were synthesized and characterized for the first time, where the cation-π interaction was identified. More importantly, a reversible hydrogen absorption and desorption can be achieved over lithium carbazolide which has a hydrogen capacity as high as 6.5 wt% and a suitable enthalpy of dehydrogenation of 34.2 kJ mol-1-H2 for on-board hydrogen storage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA