Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Proteomics ; 23(16): e2300176, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37309722

RESUMEN

A huge number of high-quality predicted protein structures are now publicly available. However, many of these structures contain non-globular regions, which diminish the performance of downstream structural bioinformatic applications. In this study, we develop AlphaCutter for the removal of non-globular regions from predicted protein structures. A large-scale cleaning of 542,380 predicted SwissProt structures highlights that AlphaCutter is able to (1) remove non-globular regions that are undetectable using pLDDT scores and (2) preserve high integrity of the cleaned domain regions. As useful applications, AlphaCutter improved the folding energy scores and sequence recovery rates in the re-design of domain regions. On average, AlphaCutter takes less than 3 s to clean a protein structure, enabling efficient cleaning of the exploding number of predicted protein structures. AlphaCutter is available at https://github.com/johnnytam100/AlphaCutter. AlphaCutter-cleaned SwissProt structures are available for download at https://doi.org/10.5281/zenodo.7944483.


Asunto(s)
Proteínas , Proteínas/metabolismo , Bases de Datos de Proteínas
2.
Commun Biol ; 6(1): 284, 2023 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-36932164

RESUMEN

The control of cell movement through manipulation of cytoskeletal structure has therapeutic prospects notably in the development of novel anti-metastatic drugs. In this study, we determine the structure of Ras-binding domain (RBD) of ELMO1, a protein involved in cytoskeletal regulation, both alone and in complex with the activator RhoG and verify its targetability through computational nanobody design. Using our dock-and-design approach optimized with native-like initial pose selection, we obtain Nb01, a detectable binder from scratch in the first-round design. An affinity maturation step guided by structure-activity relationship at the interface generates 23 Nb01 sequence variants and 17 of them show enhanced binding to ELMO1-RBD and are modeled to form major spatial overlaps with RhoG. The best binder, Nb29, inhibited ELMO1-RBD/RhoG interaction. Molecular dynamics simulation of the flexibility of CDR2 and CDR3 of Nb29 reveal the design of stabilizing mutations at the CDR-framework junctions potentially confers the affinity enhancement.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Simulación de Dinámica Molecular , Proteínas de Unión al GTP rho , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
3.
Proteins ; 90(3): 732-746, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34676905

RESUMEN

Fluorescent protein (FP) design is among the challenging protein design problems due to the tradeoffs among multiple properties to be optimized. Despite the accumulated efforts in design and characterization, progress has been slow in gaining a full understanding of sequence-property relationships to tackle the multiobjective design problem in FPs. In this study, we approach this problem by developing FPredX, a collection of gradient-boosted decision tree models, which mapped FP sequences to four major design targets of FPs, including excitation maximum, emission maximum, brightness, and oligomeric state. By training using one-hot encoded multiple aligned sequences with hyperparameters optimization in each model, FPredX models showed excellent prediction performance for all target properties compared with existing methods. We further interpreted the FPredX models by comparing the importance of positions along the aligned FP sequence to the predictive performance and suggested positions, which showed differential importance deemed by FPredX models to the prediction of each target property.


Asunto(s)
Proteínas Luminiscentes/química , Secuencia de Aminoácidos , Benchmarking , Biología Computacional , Modelos Moleculares , Conformación Proteica , Relación Estructura-Actividad Cuantitativa , Espectrometría de Fluorescencia
4.
Pharmaceuticals (Basel) ; 14(10)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34681192

RESUMEN

Modeling the binding pose of an antibody is a prerequisite to structure-based affinity maturation and design. Without knowing a reliable binding pose, the subsequent structural simulation is largely futile. In this study, we have developed a method of machine learning-guided re-ranking of antigen binding poses of nanobodies, the single-domain antibody which has drawn much interest recently in antibody drug development. We performed a large-scale self-docking experiment of nanobody-antigen complexes. By training a decision tree classifier through mapping a feature set consisting of energy, contact and interface property descriptors to a measure of their docking quality of the refined poses, significant improvement in the median ranking of native-like nanobody poses by was achieved eightfold compared with ClusPro and an established deep 3D CNN classifier of native protein-protein interaction. We further interpreted our model by identifying features that showed relatively important contributions to the prediction performance. This study demonstrated a useful method in improving our current ability in pose prediction of nanobodies.

5.
J Enzyme Inhib Med Chem ; 33(1): 1362-1375, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30191728

RESUMEN

In this study, we examined the anti-Helicobactor pylori effects of the main protoberberine-type alkaloids in Rhizoma Coptidis. Coptisine exerted varying antibacterial and bactericidal effects against three standard H. pylori strains and eleven clinical isolates, including four drug-resistant strains, with minimum inhibitory concentrations ranging from 25 to 50 µg/mL and minimal bactericidal concentrations ranging from 37.5 to 125 µg/mL. Coptisine's anti-H. pylori effects derived from specific inhibition of urease in vivo. In vitro, coptisine inactivated urease in a concentration-dependent manner through slow-binding inhibition and involved binding to the urease active site sulfhydryl group. Coptisine inhibition of H. pylori urease (HPU) was mixed type, while inhibition of jack bean urease was non-competitive. Importantly, coptisine also inhibited HPU by binding to its nickel metallocentre. Besides, coptisine interfered with urease maturation by inhibiting activity of prototypical urease accessory protein UreG and formation of UreG dimers and by promoting dissociation of nickel from UreG dimers. These findings demonstrate that coptisine inhibits urease activity by targeting its active site and inhibiting its maturation, thereby effectively inhibiting H. pylori. Coptisine may thus be an effective anti-H. pylori agent.


Asunto(s)
Antibacterianos/farmacología , Berberina/análogos & derivados , Inhibidores Enzimáticos/farmacología , Helicobacter pylori/efectos de los fármacos , Ureasa/antagonistas & inhibidores , Ureasa/química , Antibacterianos/química , Berberina/química , Berberina/farmacología , Dominio Catalítico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Helicobacter pylori/enzimología , Concentración de Iones de Hidrógeno , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Ureasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA