Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Appl Genet ; 64(3): 409-418, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37269444

RESUMEN

Waxy corn possessing high amylopectin is widely employed as an industrial product. Traditional corn contains ~ 70-75% amylopectin, whereas waxy corn with the mutant waxy1 (wx1) gene possesses ~ 95-100% amylopectin. Marker-assisted breeding can greatly hasten the transfer of the wx1 allele into normal corn. However, the available gene-based marker(s) for wx1 are not always polymorphic between recipient and donor parents, thereby causing a considerable delay in the molecular breeding program. Here, a 4800 bp sequence of the wx1 gene was analyzed among seven wild-type and seven mutant inbreds employing 16 overlapping primers. Three polymorphisms viz., 4 bp InDel (at position 2406 bp) in intron-7 and two SNPs (C to A at position 3325 bp in exon-10 and G to T at position 4310 bp in exon-13) differentiated the dominant (Wx1) and recessive (wx1) allele. Three breeder-friendly PCR markers (WxDel4, SNP3325_CT1, and SNP4310_GT2) specific to InDel and SNPs were developed. WxDel4 amplified 94 bp among mutant-type inbreds, while 90 bp was amplified among wild-type inbreds. SNP3325_CT1 and SNP4310_GT2 revealed the presence-absence polymorphisms with an amplification of 185 bp and 189 bp of amplicon, respectively. These newly developed markers showed 1:1 segregation in both BC1F1 and BC2F1 generations, while 1:2:1 segregation was observed in BC2F2. The recessive homozygotes (wx1wx1) of BC2F2 identified by the markers possessed significantly higher amylopectin (97.7%) compared to the original inbreds (Wx1Wx1: 72.7% amylopectin). This is the first report of novel wx1 gene-based markers. The information generated here would help in accelerating the development of waxy maize hybrids.


Asunto(s)
Amilopectina , Zea mays , Amilopectina/genética , Zea mays/genética , Barajamiento de ADN , Fitomejoramiento , Marcadores Genéticos , Polimorfismo de Nucleótido Simple/genética
2.
3 Biotech ; 12(3): 62, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35186659

RESUMEN

Maize possesses wide variation in amylose and amylopectin which assumes significance as a part of both food-chain and different industrial applications. Estimation of amylose and amylopectin in maize kernels is important for developing suitable hybrids. The existing protocols for estimation of amylose and amylopectin in maize are elaborate and lengthy, and involve high cost. Here, we developed a rapid and cost-effective method for estimation of amylose and amylopectin in maize kernels. 10% toluene and 80% ethanol were used for removal of proteins (~ 10%) and lipids (~ 4%) from maize flour. The over-estimation of amylose was minimized using NaOH with KI to stop free KI to bind with amylopectin. Standards were improved by mixing amylose and amylopectin in different concentrations (0-100%), rather than using amylose or amylopectin alone. Standard curve generated regression equation of y = 90.436x + 0.8535 with R 2 = 0.9989. Two types of samples viz., (1) protein, amylose and amylopectin (2) amylose and amylopectin, showed that starch fractions were highly comparable to expected values with correlation coefficient (r) of 0.9998 and mean standard deviation of 0.54. The protocol successfully estimated wide range of amylose (2.79-50.04%) and amylopectin (59.96-97.21%) among diverse maize inbreds including amylose extender1 (ae1) and waxy1 (wx1) mutants. Present protocol required 75% less time and 92.5% less cost compared to existing protocols. The newly developed method would be highly useful in developing maize hybrids high in amylose or amylopectin. This is the first report of rapid and cost-effective protocol for estimation of starch fractions in maize kernels.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA