Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(17): e36519, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39263075

RESUMEN

Thermal energy storage (TES) offers a practical solution for reducing industrial operation costs by load-shifting heat demands within industrial processes. In the integrated Thermomechanical pulping process, TES systems within the Energy Hub can provide heat for the paper machine, aiming to minimize electricity costs during peak hours. This strategic use of TES technology ensures more cost-effective and efficient energy consumption management, leading to overall operational savings. This research presents a novel method for optimizing the design and operation of an Energy Hub with TES in the forest industry. The proposed approach for the optimal design involves a comprehensive analysis of the dynamic efficiency, reliability, and availability of system components. The Energy Hub comprises energy conversion technologies such as an electric boiler and a steam generator heat pump. The study examines how the reliability of the industrial Energy Hub system affects operational costs and analyzes the impact of the maximum capacities of its components on system reliability. The method identifies the optimal design point for maximizing system reliability benefits. To optimize the TES system's charging/discharging schedule, an advanced predictive method using time series prediction models, including LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Unit), has been developed to forecast average daily electricity prices. The results highlight significant benefits from the optimal operation of TES integrated with Energy Hubs, demonstrating a 4.5-6 percent reduction in system operation costs depending on the reference year. Optimizing the Energy Hub design improves system availability, reducing operation costs due to unsupplied demand penalty costs. The system's peak availability can reach 98 %, with a maximum heat pump capacity of 2 MW and an electric boiler capacity of 3.4 MW. The GRU method showed superior accuracy in predicting electricity prices compared to LSTM, indicating its potential as a reliable electricity price predictor within the system.

2.
Langmuir ; 38(34): 10465-10477, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35973231

RESUMEN

Controlling droplet breakup characteristics such as size, frequency, regime, and droplet quality within flow-focusing microfluidic devices is critical for different biomedical applications of droplet microfluidics such as drug delivery, biosensing, and nanomaterial preparation. The development of a prediction platform capable of forecasting droplet breakup characteristics can significantly improve the iterative design and fabrication processes required for achieving desired performance. The present study aims to develop a multipurpose platform capable of predicting the working conditions of user-specific droplet size and frequency and reporting the quality of the generated droplets, regime, and hydrodynamical breakup characteristics in flow-focusing microdevices with different cross-junction tilt angles. Four different neural network-based prediction platforms were compared to accurately estimate capsule size, generation rate, uniformity, and circle metric. The trained capsule size and frequency networks were optimized using the heuristic optimization approach for establishing the Pareto optimal solution plot. To investigate the transition of the droplet generation regime (i.e., squeezing, dripping, and jetting), two different classification models (LDA and MLP) were developed and compared in terms of their prediction accuracy. The MLP model outperformed the LDA model with a cross-validation measure evaluated as 97.85%, demonstrating that the droplet quality and regime prediction models can provide an engineering judgment for the decision maker to choose between the suggested solutions on the Pareto front. The study followed a comprehensive hydrodynamical analysis of the junction angle effect on the dispersed thread formation, pressure, and velocity domains in the orifice.


Asunto(s)
Dispositivos Laboratorio en un Chip , Microfluídica , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA