Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(16)2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39201325

RESUMEN

Breast cancer (BC) remains a significant global health concern, with neoadjuvant chemotherapy (NACT) offering preoperative benefits like tumor downstaging and treatment response assessment. However, identifying factors influencing post-NACT treatment response and survival outcomes is challenging. Metabolomic approaches offer promising insights into understanding these outcomes. This study analyzed the serum of 80 BC patients before and after NACT, followed for up to five years, correlating with disease-free survival (DFS) and overall survival (OS). Using untargeted nuclear magnetic resonance (NMR) spectroscopy and a novel statistical model that avoids collinearity issues, we identified metabolic changes associated with survival outcomes. Four metabolites (histidine, lactate, serine, and taurine) were significantly associated with DFS. We developed a metabolite-related survival score (MRSS) from these metabolites, stratifying patients into low- and high-risk relapse groups, independent of classical prognostic factors. High-risk patients had a hazard ratio (HR) for DFS of 3.42 (95% CI 1.51-7.74; p = 0.003) after adjustment for disease stage and age. A similar trend was observed for OS (HR of 3.34, 95% CI 1.64-6.80; p < 0.001). Multivariate Cox proportional hazards analysis confirmed the independent prognostic value of the MRSS. Our findings suggest the potential of metabolomic data, alongside traditional markers, in guiding personalized treatment decisions and risk stratification in BC patients undergoing NACT. This study provides a methodological framework for leveraging metabolomics in survival analyses.


Asunto(s)
Neoplasias de la Mama , Metabolómica , Terapia Neoadyuvante , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/sangre , Neoplasias de la Mama/patología , Persona de Mediana Edad , Metabolómica/métodos , Adulto , Pronóstico , Anciano , Supervivencia sin Enfermedad , Metaboloma , Quimioterapia Adyuvante , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/metabolismo , Modelos de Riesgos Proporcionales
2.
Cell ; 187(10): 2393-2410.e14, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38653235

RESUMEN

SARS-CoV-2 and other sarbecoviruses continue to threaten humanity, highlighting the need to characterize common mechanisms of viral immune evasion for pandemic preparedness. Cytotoxic lymphocytes are vital for antiviral immunity and express NKG2D, an activating receptor conserved among mammals that recognizes infection-induced stress ligands (e.g., MIC-A/B). We found that SARS-CoV-2 evades NKG2D recognition by surface downregulation of MIC-A/B via shedding, observed in human lung tissue and COVID-19 patient serum. Systematic testing of SARS-CoV-2 proteins revealed that ORF6, an accessory protein uniquely conserved among sarbecoviruses, was responsible for MIC-A/B downregulation via shedding. Further investigation demonstrated that natural killer (NK) cells efficiently killed SARS-CoV-2-infected cells and limited viral spread. However, inhibition of MIC-A/B shedding with a monoclonal antibody, 7C6, further enhanced NK-cell activity toward SARS-CoV-2-infected cells. Our findings unveil a strategy employed by SARS-CoV-2 to evade cytotoxic immunity, identify the culprit immunevasin shared among sarbecoviruses, and suggest a potential novel antiviral immunotherapy.


Asunto(s)
COVID-19 , Evasión Inmune , Células Asesinas Naturales , Subfamilia K de Receptores Similares a Lectina de Células NK , SARS-CoV-2 , Humanos , SARS-CoV-2/inmunología , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , COVID-19/inmunología , COVID-19/virología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Animales , Citotoxicidad Inmunológica , Regulación hacia Abajo , Pulmón/inmunología , Pulmón/virología , Pulmón/patología
3.
Antioxidants (Basel) ; 10(5)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34062984

RESUMEN

High superoxide dismutase 2 (SOD2) expression is associated with a poor prognosis at many cancer sites, the presence of metastases, and more advanced cervical cancer. This study aims to determine whether SOD2 protein expression is associated with the prognosis of stage IIIB cervical carcinoma. METHODS: sixty-three patients with stage IIIB squamous cell cervical carcinoma were included. The evaluation of SOD2 expression by immunohistochemistry was based on a positive cell ratio score and the staining intensity score. Taking disease recurrence and death as endpoints, receiver operating characteristic curves were used to discriminate between high and low SOD2 expression. RESULTS: high SOD2 expression was associated with recurrence (p = 0.001), distant recurrence (p = 0.002), and death (p = 0.005). A multivariate analysis showed that patients with high SOD2 expression had a threefold increased risk for recurrence (HR = 3.16; 1.33-7.51) and death (HR = 2.98; 1.20-7.40) compared with patients who had low SOD2 expression. Patients with high SOD2 expression had shorter disease-free survival (p = 0.001) and overall survival (p = 0.003) than patients with low SOD2 expression. CONCLUSION: high SOD2 expression is a strong prognostic factor for stage IIIB squamous cell carcinoma of the cervix and could be used as a prognostic marker in women with cervical carcinoma.

4.
Int J Mol Sci ; 19(2)2018 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-29466297

RESUMEN

Although the classification of breast carcinomas into molecular or immunohistochemical subtypes has contributed to a better categorization of women into different therapeutic regimens, breast cancer nevertheless still progresses or recurs in a remarkable number of patients. Identifying women who would benefit from chemotherapy could potentially increase treatment effectiveness, which has important implications for long-term survival. Metabolomic analyses of fluids and tissues from cancer patients improve our knowledge of the reprogramming of metabolic pathways involved in resistance to chemotherapy. This review evaluates how recent metabolomic approaches have contributed to understanding the relationship between breast cancer and the acquisition of resistance. We focus on the advantages and challenges of cancer treatment and the use of new strategies in clinical care, which helps us comprehend drug resistance and predict responses to treatment.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Metabolómica/métodos , Neoplasias de la Mama/clasificación , Resistencia a Antineoplásicos , Femenino , Humanos , Modelos Biológicos , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA