RESUMEN
BACKGROUND: The diversity of individuals at risk for Trypanosoma cruzi infection in the United States poses challenges for diagnosis. We evaluated the diagnostic accuracy of Food and Drug Administration (FDA)-cleared tests in the Washington Metropolitan area (WMA). METHODS: In total, 1514 individuals were evaluated (1078 from Mexico, Central and northern South America [TcI-predominant areas], and 436 from southern South America [TcII/V/VI-predominant areas]). Optical density (OD) values from the Hemagen EIA and Chagatest v.3 Wiener, and categorical results of the IgG-TESA-blot (Western blot with trypomastigote excretory-secretory antigen), and the Chagas detect plus (CDP), as well as information of area of origin were used to determine T. cruzi serostatus using latent class analysis. RESULTS: We detected 2 latent class (LC) of seropositives with low (LC1) and high (LC2) antibody levels. A significantly lower number of seropositives were detected by the Wiener, IgG-TESA-blot, and CDP in LC1 (60.6%, P < .001, 93.1%, P = .014, and 84.9%, P = .002, respectively) as compared to LC2 (100%, 100%, and 98.2%, respectively). LC1 was the main type of seropositives in TcI-predominant areas, representing 65.0% of all seropositives as opposed to 22.8% in TcII/V/VI-predominant areas. The highest sensitivity was observed for the Hemagen (100%, 95% confidence interval [CI]: 96.2-100.0), but this test has a low specificity (90.4%, 95% CI: 88.7-91.9). The best balance between positive (90.9%, 95% CI: 83.5-95.1), and negative (99.9%, 95% CI: 99.4-99.9) predictive values was obtained with the Wiener. CONCLUSIONS: Deficiencies in current FDA-cleared assays were observed. Low antibody levels are the main type of seropositives in individuals from TcI-predominant areas, the most frequent immigrant group in the United States.
Asunto(s)
Enfermedad de Chagas , Trypanosoma cruzi , Enfermedad de Chagas/diagnóstico , Enfermedad de Chagas/epidemiología , Humanos , Análisis de Clases Latentes , México/epidemiología , América del Norte , América del Sur , WashingtónRESUMEN
BACKGROUND: Diagnosis of congenital Chagas disease (CChD) in most endemic areas is based on low-sensitive microscopy at birth and 9-month immunoglobulin G (IgG), which has poor adherence. We aim to evaluate the accuracy of the Immunoglobulin M (IgM)-Shed Acute Phase Antigen (SAPA) test in the diagnosis of CChD at birth. METHODS: Two cohort studies (training and validation cohorts) were conducted in 3 hospitals in the department of Santa Cruz, Bolivia. Pregnant women were screened for Chagas disease, and all infants born to seropositive mothers were followed for up to 9 months to diagnose CChD. A composite reference standard was used to determine congenital infection and was based on the parallel use of microscopy, quantitative polymerase chain reaction (qPCR), and IgM-trypomastigote excreted-secreted antigen (TESA) blot at birth and/or 1 month, and/or the detection of anti-Trypanosoma cruzi IgG at 6 or 9 months. The diagnostic accuracy of the IgM-SAPA test was calculated at birth against the composite reference standard. RESULTS: Adherence to the 6- or 9-month follow-up ranged from 25.3% to 59.7%. Most cases of CChD (training and validation cohort: 76.5% and 83.7%, respectively) were detected during the first month of life using the combination of microscopy, qPCR, and/or IgM-TESA blot. Results from the validation cohort showed that when only 1 infant sample obtained at birth was evaluated, the qPCR and the IgM-SAPA test have similar accuracy (sensitivity: range, 79.1%-97.1% and 76.7%-94.3%, respectively, and specificity: 99.5% and 92.6%, respectively). CONCLUSIONS: The IgM-SAPA test has the potential to be implemented as an early diagnostic tool in areas that currently rely only on microscopy.