Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 28(13)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37446623

RESUMEN

Native potato clones grown in Peru contain bioactive compounds beneficial to human health. This study aimed to optimize the spray-drying nanoencapsulation of native potato phenolic extracts utilizing a central composite design and response surface methodology, obtaining the optimal treatment to an inlet temperature of 120 °C and an airflow of 141 L/h in the nano spray dryer B-90, which allowed maximizing the yield of encapsulation, antioxidant capacity (DPPH), encapsulation efficiency (EE), total phenolic compounds, and total flavonoids; on the other hand, it allowed minimizing hygroscopicity, water activity (Aw), and moisture. Instrumental characterization of the nanocapsules was also carried out, observing a gain in lightness, reddening of the color, and spherical nanoparticles of heterogeneous size (133.09-165.13 nm) with a negative ζ potential. Thermal, infrared, and morphological analyses confirmed the encapsulation of the core in the wall materials. Furthermore, an in vitro release study of phenolic compounds in an aqueous solution achieved a maximum value of 9.86 mg GAE/g after 12 h. Finally, the obtained nanocapsules could be used in the food and pharmaceutical industry.


Asunto(s)
Nanocápsulas , Nanopartículas , Solanum tuberosum , Humanos , Secado por Pulverización , Antioxidantes/química , Nanopartículas/química , Agua/química
2.
Nanomaterials (Basel) ; 12(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36234547

RESUMEN

The cellulose from agroindustrial waste can be treated and converted into nanocrystals or nanofibers. It could be used to produce biodegradable and edible films, contributing to the circular economy and being environmentally friendly. This research aimed to develop an edible film elaborated with activated cellulose nanocrystals, native potato starch, and glycerin. The activated cellulose nanocrystals were obtained by basic/acid digestion and esterification with citric acid from corn husks. The starch was extracted from the native potato cultivated at 3500 m of altitude. Four film formulations were elaborated with potato starch (2.6 to 4.4%), cellulose nanocrystals (0.0 to 0.12%), and glycerin (3.0 to 4.2%), by thermoforming at 60 °C. It was observed that the cellulose nanocrystals reported an average size of 676.0 nm. The films mainly present hydroxyl, carbonyl, and carboxyl groups that stabilize the polymeric matrix. It was observed that the addition of cellulose nanocrystals in the films significantly increased (p-value < 0.05) water activity (0.409 to 0.447), whiteness index (96.92 to 97.27), and organic carbon content. In opposition to gelatinization temperature (156.7 to 150.1 °C), transparency (6.69 to 6.17), resistance to traction (22.29 to 14.33 N/mm), and solubility in acidic, basic, ethanol, and water media decreased. However, no significant differences were observed in the thermal decomposition of the films evaluated through TGA analysis. The addition of cellulose nanocrystals in the films gives it good mechanical and thermal resistance qualities, with low solubility, making it a potential food-coating material.

3.
Polymers (Basel) ; 13(21)2021 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34771277

RESUMEN

Edible films prepared from biological materials are being massively used. This study aimed to prepare edible films from native potato starch of the Allcca sipas variety (Solanum tuberosum subsp. Andigena), nopal mucilage (Opuntia ficus indica), and glycerol. Twelve edible films were prepared with starch, mucilage, and glycerin in different proportions by thermosynthesis. It was observed that mucilage and glycerol have a significant direct effect on film solubility and an inverse effect on aw, while the effect of starch is the opposite. The aw ranged from 0.562 to 0.639. The FTIR analysis showed the interaction of the components in the films being considerably influenced by the addition of mucilage. The TGA/DTA analysis reported low thermal stability in the films, retaining water around 100 °C, and showing a tendency to lose weight when the content of starch is high, while the opposite occurred with the addition of mucilage; it was also observed that around 310 °C, the maximum weight loss was observed between 53.6 and 86.1%. SEM images showed uniform films without cracks. The results are promising and show the possibility of preparing edible films from native potato starch and mucilage.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA