Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Res ; 215(Pt 1): 114286, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36096170

RESUMEN

Due to the implications of poly- and perfluoroalkyl substances (PFAS) on the environment and public health, great attention has been recently made to finding innovative materials and methods for PFAS removal. In this work, PFAS is considered universal contamination which can be found in many wastewater streams. Conventional materials and processes used to remove and degrade PFAS do not have enough competence to address the issue particularly when it comes to eliminating short-chain PFAS. This is mainly due to the large number of complex parameters that are involved in both material and process designs. Here, we took the advantage of artificial intelligence to introduce a model (XGBoost) in which material and process factors are considered simultaneously. This research applies a machine learning approach using data collected from reported articles to predict the PFAS removal factors. The XGBoost modeling provided accurate adsorption capacity, equilibrium, and removal estimates with the ability to predict the adsorption mechanisms. The performance comparison of adsorbents and the role of AI in one dominant are studied and reviewed for the first time, even though many studies have been carried out to develop PFAS removal through various adsorption methods such as ion exchange, nanofiltration, and activated carbon (AC). The model showed that pH is the most effective parameter to predict PFAS removal. The proposed model in this work can be extended for other micropollutants and can be used as a basic framework for future adsorbent design and process optimization.


Asunto(s)
Fluorocarburos , Contaminantes Químicos del Agua , Adsorción , Inteligencia Artificial , Carbón Orgánico , Fluorocarburos/análisis , Aprendizaje Automático , Aguas Residuales , Contaminantes Químicos del Agua/análisis
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3978-3981, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34892102

RESUMEN

Controlling the dynamics of large-scale neural circuits might play an important role in aberrant cognitive functioning as found in Alzheimer's disease (AD). Analyzing the disease trajectory changes is of critical relevance when we want to get an understanding of the neurodegenerative disease evolution. Advanced control theory offers a multitude of techniques and concepts that can be easily translated into the dynamic processes governing disease evolution at the patient level, treatment response evaluation and revealing some central mechanisms in brain connectomic networks that drive alterations in these diseases. Two types of controllability - the modal and average controllability - have been applied in brain research to provide the mechanistic explanation of how the brain operates in different cognitive states. In this paper, we apply the concept of target controllability to structural (MRI) connectivity graphs for control (CN), mild cognitive impairment (MCI) and Alzheimer's disease (AD) subjects. In target controllability, only a subset of the network states are steered towards a desired objective. We show the graph-theoretic necessary and sufficient conditions for the structural target controllability of the above-mentioned brain networks and demonstrate that only local topological information is needed for its verification. Certain areas of the brain and corresponding to nodes in the brain network graphs can act as drivers and move the system (brain) into specific states of action. We select first the drivers that ensures the controllability of these networks and since they do not represent the smallest set, we employ the concept of structural target controllability to determine those nodes that can steer a collection of states being representative for the transitions between CN, MCI and AD networks. Our results applied on structural brain networks in dementia suggest that this novel technique can accurately describe the different node roles in controlling trajectories of brain networks and being relevant for disease evolution.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Conectoma , Enfermedades Neurodegenerativas , Encéfalo , Humanos
3.
J Magn Reson Imaging ; 54(3): 686-702, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-32864782

RESUMEN

Computer-aided diagnosis (CAD) systems have become an important tool in the assessment of breast tumors with magnetic resonance imaging (MRI). CAD systems can be used for the detection and diagnosis of breast tumors as a "second opinion" review complementing the radiologist's review. CAD systems have many common parts, such as image preprocessing, tumor feature extraction, and data classification that are mostly based on machine-learning (ML) techniques. In this review article, we describe applications of ML-based CAD systems in MRI covering the detection of diagnostically challenging lesions of the breast such as nonmass enhancing (NME) lesions, and furthermore discuss how multiparametric MRI and radiomics can be applied to the study of NME, including prediction of response to neoadjuvant chemotherapy (NAC). Since ML has been widely used in the medical imaging community, we provide an overview about the state-of-the-art and novel techniques applied as classifiers to CAD systems. The differences in the CAD systems in MRI of the breast for several standard and novel applications for NME are explained in detail to provide important examples, illustrating: 1) CAD for detection and diagnosis, 2) CAD in multiparametric imaging, 3) CAD in NAC, and 4) breast cancer radiomics. We aim to provide a comparison between these CAD applications and to illustrate a global view on intelligent CAD systems based on machine and deep learning in MRI of the breast. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Asunto(s)
Neoplasias de la Mama , Imagen por Resonancia Magnética , Mama/diagnóstico por imagen , Neoplasias de la Mama/diagnóstico por imagen , Diagnóstico por Computador , Femenino , Humanos , Terapia Neoadyuvante
4.
Invest Radiol ; 54(2): 110-117, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30358693

RESUMEN

PURPOSE: The aim of this study was to assess the potential of machine learning with multiparametric magnetic resonance imaging (mpMRI) for the early prediction of pathological complete response (pCR) to neoadjuvant chemotherapy (NAC) and of survival outcomes in breast cancer patients. MATERIALS AND METHODS: This institutional review board-approved prospective study included 38 women (median age, 46.5 years; range, 25-70 years) with breast cancer who were scheduled for NAC and underwent mpMRI of the breast at 3 T with dynamic contrast-enhanced (DCE), diffusion-weighted imaging (DWI), and T2-weighted imaging before and after 2 cycles of NAC. For each lesion, 23 features were extracted: qualitative T2-weighted and DCE-MRI features according to BI-RADS (Breast Imaging Reporting and Data System), quantitative pharmacokinetic DCE features (mean plasma flow, volume distribution, mean transit time), and DWI apparent diffusion coefficient (ADC) values. To apply machine learning to mpMRI, 8 classifiers including linear support vector machine, linear discriminant analysis, logistic regression, random forests, stochastic gradient descent, decision tree, adaptive boosting, and extreme gradient boosting (XGBoost) were used to rank the features. Histopathologic residual cancer burden (RCB) class (with RCB 0 being a pCR), recurrence-free survival (RFS), and disease-specific survival (DSS) were used as the standards of reference. Classification accuracy with area under the receiving operating characteristic curve (AUC) was assessed using all the extracted qualitative and quantitative features for pCR as defined by RCB class, RFS, and DSS using recursive feature elimination. To overcome overfitting, 4-fold cross-validation was used. RESULTS: Machine learning with mpMRI achieved stable performance as shown by mean classification accuracies for the prediction of RCB class (AUC, 0.86) and DSS (AUC, 0.92) based on XGBoost and the prediction of RFS (AUC, 0.83) with logistic regression. The XGBoost classifier achieved the most stable performance with high accuracies compared with other classifiers. The most relevant features for the prediction of RCB class were as follows: changes in lesion size, complete pattern of shrinkage, and mean transit time on DCE-MRI; minimum ADC on DWI; and peritumoral edema on T2-weighted imaging. The most relevant features for prediction of RFS were as follows: volume distribution, mean plasma flow, and mean transit time; DCE-MRI lesion size; minimum, maximum, and mean ADC with DWI. The most relevant features for prediction of DSS were as follows: lesion size, volume distribution, and mean plasma flow on DCE-MRI, and maximum ADC with DWI. CONCLUSIONS: Machine learning with mpMRI of the breast enables early prediction of pCR to NAC as well as survival outcomes in breast cancer patients with high accuracy and thus may provide valuable predictive information to guide treatment decisions.


Asunto(s)
Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/tratamiento farmacológico , Aprendizaje Automático , Imagen por Resonancia Magnética/métodos , Terapia Neoadyuvante/métodos , Adulto , Anciano , Mama/diagnóstico por imagen , Quimioterapia Adyuvante , Imagen de Difusión por Resonancia Magnética/métodos , Femenino , Humanos , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Prospectivos , Curva ROC , Reproducibilidad de los Resultados , Análisis de Supervivencia , Resultado del Tratamiento
5.
PLoS One ; 13(9): e0203829, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30231077

RESUMEN

In this study, a multi-stage optimization procedure is proposed to develop deep neural network models which results in a powerful deep learning pipeline called intelligent deep learning (iDeepLe). The proposed pipeline is then evaluated by a challenging real-world problem, the modeling of the spectral acceleration experienced by a particle during earthquakes. This approach has three main stages to optimize the deep model topology, the hyper-parameters, and its performance, respectively. This pipeline optimizes the deep model via adaptive learning rate optimization algorithms for both accuracy and complexity in multiple stages, while simultaneously solving the unknown parameters of the regression model. Among the seven adaptive learning rate optimization algorithms, Nadam optimization algorithm has shown the best performance results in the current study. The proposed approach is shown to be a suitable tool to generate solid models for this complex real-world system. The results also show that the parallel pipeline of iDeepLe has the capacity to handle big data problems as well.


Asunto(s)
Redes Neurales de la Computación , Algoritmos , Simulación por Computador , Análisis de Datos , Aprendizaje Profundo , Aprendizaje Automático , Movimiento (Física)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA