Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Radiat Environ Biophys ; 61(3): 375-390, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35699753

RESUMEN

To predict the biological effects of ionising radiation, the quantity of biological dose is introduced instead of the physical absorbed dose. In proton therapy, a constant relative biological effectiveness (RBE) of 1.1 is usually applied clinically as recommended by the International Commission of Radiation Units and Measurements. This study presents a new model, based on the modified microdosimetric kinetic model (MMKM), for calculating variable RBE values based on experimental data on the induction of DNA double-strand breaks (DSBs) within cells. The MMKM was proposed based on experimental data for the yield of DSBs in mammalian cells, which allows modification of the yield of primary lesions in the MKM. In this approach, a unique function named f(LET), which describes the relation between RBE and linear energy transfer (LET), was considered for charged particles. In the presented model (DMMKM), the MMKM approach was developed further by considering different f(LET)s for different relevant ions involved in energy deposition events in proton therapy. Although experimental data represent the dependence of the yield of primary lesions on the ion species, the DSB yield (assumed as the main primary lesion) is assumed independent of the ion species in the MMKM. In the DMMKM, by considering the yield of primary lesions as a function of the ion species, the α and ß values are in better agreement with the experimental data as compared to those of the MKM and MMKM approaches. The biological dose in the DMMKM is predicted to be lower than that in the MMKM. Further, in the proposed model, the variation of the ß parameter is higher than the constant value assumed in the MKM, at the distal end of the spread-out Bragg peak (SOBP). Moreover, the level of cell death estimated by the MMKM at the SOBP region is higher than that obtained based on the DMMKM. It is concluded that considering modified f(LET)s in the model developed here is more consistent with experimental results than when MMKM and MKM approaches are considered. The DMMKM examines the biological effects with full detail and will, therefore, be effective in improving proton therapy.


Asunto(s)
Terapia de Protones , Animales , Cinética , Transferencia Lineal de Energía , Mamíferos , Terapia de Protones/métodos , Efectividad Biológica Relativa
2.
Appl Radiat Isot ; 182: 110146, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35182934

RESUMEN

Knowledge of the energy deposition in different eye components is a critical decision-making to the overall effectivity of ocular melanoma treatment with plaques loaded with low-energy sources. The aim of this study is using the GATE 8.2 Monte Carlo code to calculate the 3D dose distribution in a realistic eye model. At first, we validated the GATE simulation for 125I, 103Pd, and 131Cs seeds by calculating the dose rate constant, radial dose function, and anisotropy function of the three radioactive sources. Then, a 12-mm Collaborative Ocular Melanoma Study (COMS) eye plaque was simulated in the eye phantoms to evaluate dose distribution due to low-energy gamma emitters on the three simulated medium-sized tumors. The findings of this study indicate that the estimated doses received by different eye substructures strongly depend on the source type. The results show that the type of seeds used in the plaque, as well as the size of the eye tumor, have significant effects on the dose deposition in the different structures of the eye and dose deposition uniformity. Moreover, comparing different radionuclides showed that the COMS plaque fully loaded with 103Pd presents a higher dose delivery to the tumor and a lower one to the critical structures for medium-sized tumors, while the plaque fully loaded with 131Cs produces the most uniform dose distribution in the tumor.


Asunto(s)
Neoplasias del Ojo/radioterapia , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Braquiterapia , Radioisótopos de Cesio , Ojo/anatomía & histología , Neoplasias del Ojo/patología , Humanos , Radioisótopos de Yodo , Paladio , Radioisótopos
3.
Nucl Med Mol Imaging ; 55(2): 86-95, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33968275

RESUMEN

PURPOSE: Dose distributions are calculated by Monte Carlo (MC) simulations for two low-energy models 125I brachytherapy source-IrSeed-125 and IsoAid Advantage (model IAI-125A)-loaded in the 14-mm standardized plaque of the COMS during treatment of choroid melanoma. METHODS: In this study, at first, the radial dose function in water around 125I brachytherapy sources was calculated based on the recommendations of the Task Group No. 43 American Association of Physicists in Medicine (TG-43U1 APPM) using by GATE code. Then, brachytherapy dose distribution of a new model of the human eye was investigated for a 14-mm COMS eye plaque loaded with these sources with GATE Monte Carlo simulation. RESULTS: Results show that there are good agreements between simulation results of these sources and reporting measurements and simulations. Dosimetry results in the designed eye phantom for two types of iodine seeds show that the ratios of average dose of tumor to sclera, vitreous, and retina for IrSeed (IsoAid) source are 3.7 (3.7), 6.2 (6.1), and 6.3 (6.3), respectively, which represents the dose saving to healthy tissues. The maximum percentage differences between DVH curve of IsoAid and IrSeed seeds was about 8%. CONCLUSIONS: Our simulation results show that although new model of the 125I brachytherapy source having a slightly larger dimension than IAI-125A, it can be used for eye melanoma treatment because the COMS eye plaque loaded with IrSeed-125 could produce similar results to the IsoAid seeds, which is applicable for clinical plaque brachytherapy for uveal melanoma.

4.
Ann Nucl Med ; 34(10): 742-756, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32632563

RESUMEN

OBJECTIVE: Cellular dosimetry plays a crucial role in radiobiology and evaluation of the relative merits of radiopharmaceuticals used for targeted radionuclide therapy. The present study aims to investigate the effects of various cell geometries on dosimetric characteristics of several Auger emitters distributed in different subcellular compartments using Monte Carlo simulation. METHODS: The Geant4-DNA extension of the Geant4 Monte Carlo simulation toolkit was employed to calculate the mean absorbed dose per unit cumulated activity (S value) for different subcellular distributions of several Auger electron-emitting theranostic radionuclides including 99mTc, 111In, 123I, 125I, and 201Tl. The simulations were carried out in various single-cell models of liquid water including spherical, ellipsoidal, spherical spindle, and ellipsoidal spindle cell models. The latter two models which are generalized from the first two models were inspired by the morphologies of spindle-shaped (fusiform) cells, and were developed to provide more realistic modeling of this common geometry observed in many healthy and cancerous cells. RESULTS: Evaluation of the S values calculated for the examined cell models reveals that the differences are small (less than 9%) for the cell ← cell, cell ← cell surface, and nucleus ← nucleus source-target combinations. However, moderate discrepancies are seen (up to 28%) when the nucleus is considered as the target, as well as the radioactivity is either internalized into the cytoplasm or bound to the cell membrane. CONCLUSIONS: The findings of the present work suggest that the assumption of spherical cell geometry may provide reasonably accurate estimates of the cellular/nuclear dose for the considered Auger emitters, even for spindle-shaped cells. Of course, this approximation should be used with caution for the nucleus ← cytoplasm and nucleus ← cell surface configurations, since the S-value sensitivity to the cell geometry is somewhat significant in these cases.


Asunto(s)
Forma de la Célula , Método de Montecarlo , Radiometría/métodos
5.
Nucl Med Mol Imaging ; 53(6): 414-422, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31867077

RESUMEN

PURPOSE: The treatment efficiency of 90Y and providing reliable estimates of activity are evaluated by SPECT imaging of bremsstrahlung radiation released during beta therapy. In this technique, the resulting spectrum from 90Y is very complex and continuous, which creates difficulties on the imaging protocol. Moreover, collimator geometry has an impressive effect on the spatial resolution, system sensitivity, image contrast, and the signal-to-noise ratio (SNR), which should be optimized. METHODS: We evaluated the effect of energy window width, reconstruction algorithms, and different geometries of a medium-energy (ME) parallel-hole collimator on the image contrast and SNR of 90Y SPECT images. The Siemens E.Cam gamma camera equipped with a ME collimator and a digital Jaszczak phantom were simulated by SIMIND Monte Carlo program to generate the 90Y bremsstrahlung SPECT images. RESULTS: Our results showed that optimal image quality can be acquired by the reconstruction algorithm of OS-EM in the energy window width of 60 to 400 keV for 90Y bremsstrahlung SPECT imaging. Furthermore, the optimal values of the hole diameter and hole length of a ME collimator were obtained 0.235 and 4.4 cm, respectively. CONCLUSIONS: The acquired optimal ME collimator and energy window along with using a suitable reconstruction algorithm lead to improved contrast and SNR of 90Y bremsstrahlung images of hot spheres of the digital Jaszczak phantom. This can improve the accuracy and precision of the 90Y activity distribution estimation after radioembolization in targeted radionuclide therapy.

6.
Nucl Med Rev Cent East Eur ; 22(2): 45-55, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31482556

RESUMEN

BACKGROUND: Recently, the treatment efficiency of Yttrium 90 (Y-90) and providing reliable estimates of activity by single photon emission computed tomography (SPECT) imaging of bremsstrahlung radiation released during beta therapy have been evaluated. In the Y-90 bremsstrahlung SPECT imaging, the resulting energy spectrum is very complex and continuous, which creates many difficulties in the imaging protocol and image reconstruction. Furthermore, image quality and quantitative accuracy in the bremsstrahlung SPECT imaging are affected by collimator penetration and scatter. So, the collimator type and its geometry have impressive effects on the spatial resolution, system sensitivity and image contrast. MATERIAL AND METHODS: Hereby, in this paper, we evaluated the effect of the energy window (three energy windows: 60 to 160 keV, 160 to 400 keV, and 60 to 400 keV) and the commercial parallel-hole collimators with different geometric parameters on the Y-90 bremsstrahlung spectrum and the image quality of the liver tumors based on criteria such as system sensitivity and image contrast. SIMIND Monte Carlo simulation code was used to generate the Y-90 bremsstrahlung SPECT images of the liver tumor with different diameters: 1.36, 2.04, 2.72, 3.4, 4.08, and 4.76 cm by use of the digital Zubal phantom. Furthermore, the tumor size was estimated by evaluating pixel intensity profile on the line drawn through the activity distribution image. RESULTS: Our results showed that the collimator choice and energy window setting in the bremsstrahlung SPECT imaging have significant effects on the image quality and tumor size estimation. Optimal image quality could be acquired by the energy window of 60 to 400 keV and the SPECT system equipped with a Medium-Energy General-Purpose (MEGP) collimator of Millennium VG Kameran (GV) Company. Moreover, the estimation of distribution size was close to the actual value for tumor sizes larger than 2.04 cm, especially by using the SPECT system equipped with the GV-MEGP collimator in the wide energy window. CONCLUSIONS: We found an optimal collimator to be more appropriate for improving the imaging quality of Y-90 bremsstrahlung photons, which can be used for reliable activity distribution estimates after radiation therapy.


Asunto(s)
Método de Montecarlo , Tomografía Computarizada de Emisión de Fotón Único/métodos , Radioisótopos de Itrio , Humanos , Procesamiento de Imagen Asistido por Computador , Fantasmas de Imagen
7.
J Contemp Brachytherapy ; 11(1): 76-90, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30911314

RESUMEN

PURPOSE: Dosimetric characterization of a new 32P brachytherapy source was studied and the validity of the FLUKA code to reproduce the dosimetric parameters in a water phantom was evaluated. In addition, dose rate distributions around the 32P source sheathed by a catheter and unsheathed source were investigated in different tissue phantoms. MATERIAL AND METHODS: The new 32P source was modeled using FLUKA Monte Carlo code. According to the AAPM TG-60 recommendations, reference of absorbed dose rate, radial dose function, anisotropy function, and an away-along table for quality assurance purposes inside water phantom were calculated. Moreover, the results of the radial dose function and dose rate were obtained for the sheathed source and unsheathed sources at radial distances in different tissue phantoms: liver, fat tissue, 9-component soft tissue, and 4-component soft tissue. RESULTS: The calculated dosimetric parameters of the new 32P source by FLUKA code in water phantom agreed well with that of the GEANT4 calculation. The 2D away-along dose results were similar to the GEANT4 simulation for distances less than 0.25 cm, small differences were apparent at long distances from the source. Dose rate evaluation for the sheathed source shows that the presence of a catheter increases the dose values up to 2.11% in comparison with the unsheathed source in water phantom. Our results show that the radial dose function calculated in water, as generalized by AAPM TG-60, differed in tissue, especially at large distances from the source. CONCLUSIONS: This work fully characterizes dosimetric parameters of the sheathed and unsheathed new 32P brachytherapy sources in water and different tissue phantoms by using FLUKA code. The results demonstrate that the dose distribution in water differed from the calculated ones in tissue phantoms due to the densities and atomic composition for tissues that are not taken account by the TG-60 formalism.

8.
Radiat Environ Biophys ; 58(3): 353-371, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30927051

RESUMEN

Investigation of biological effects of low-dose ionizing radiation at the (sub-) cellular level, which is referred to as microdosimetry, remains a major challenge of today's radiobiology research. Monte Carlo simulation of radiation tracks can provide a detailed description of the physical processes involved in dimensions as small as the critical substructures of the cell. Hereby, in the present study, microdosimetric calculations of cellular S values for mono-energetic electrons and six Auger-emitting radionuclides were performed in single-cell models of liquid water using Geant4-DNA. The effects of displacement and rotation of the nucleus within the cell on the cellular S values were studied in spherical and ellipsoidal geometries. It was found that for the examined electron energies and radionuclides, in the case of nucleus cross-absorption where the radioactivity is either localized in the cytoplasm of the cell or distributed on the cell surface, rotation of the nucleus within the cell affects cellular S values less than displacement of the nucleus. Especially, the considerable differences observed in S(nucleus ← cell surface) values between an eccentric and a concentric cell-nucleus configuration in spherical and ellipsoidal geometries (up to 63% and up to 44%, respectively) suggests that the approximation of concentricity should be used with caution, at least for localized irradiation of the cell membrane by an Auger-emitter in targeted radionuclide cancer therapy. The obtained results, which are based on a more realistic modeling of the cell than was done before, provide more accurate information about nuclear dose. This can be useful for theranostic applications.


Asunto(s)
Simulación por Computador , ADN/química , Dosis de Radiación , Núcleo Celular , ADN/efectos de la radiación , Electrones , Humanos , Método de Montecarlo , Radiometría , Programas Informáticos
9.
Australas Phys Eng Sci Med ; 41(1): 31-39, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29230656

RESUMEN

GATE is currently considered in scintigraphic imaging as a powerful tool to develop, design and optimize nuclear medicine modalities. This paper describes the GATE simulation of a pixelated gamma camera which is dedicated to high resolution of small animals imaging. It consists of a CsI(Na) crystal array coupled to position sensitive photomultiplier tube. The simulation model includes photon tracking through low energy high resolution hexagonal parallel holes collimator, CsI(Na) pixelated crystal, back-compartment, and camera shielding. Simulations were compared with experimental results by some criteria such as energy spectrum, energy resolution, spatial resolution, sensitivity and count profiles obtained from line and point sources imaging. The acquired energy resolution show good agreement with measured spectra. Difference between calculated and experimental values is about 0.3% for absolute sensitivity measurement. The result of the image uniformity is more consistent after implementation of non-uniformity correction. These values were about 1.3 and 1.2% for experimental and simulation study in the central field of view, respectively. Measurements showed that the spatial resolutions differences at the head surface along the long dimensions of gamma camera for simulation and experimental differed by no more than 4%.Differences along the short axis were about 6%. The FWHMs of images of point and line sources show good consistency between experimental images and corresponding simulated ones. The difference between experimental and simulated system parameters was within 11%. Our results demonstrate the ability and flexibility of the Monte Carlo simulation for modeling pixelated gamma camera with position sensitive detector by selecting the appropriate parameters for digitizer chain and collimator position on the detector surface.


Asunto(s)
Cesio/química , Simulación por Computador , Cámaras gamma , Yoduros/química , Método de Montecarlo , Programas Informáticos , Tomografía Computarizada de Emisión de Fotón Único , Animales , Cristalización , Fantasmas de Imagen , Fotones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA