RESUMEN
With the increasing need to promote healthy and sustainable diets, seaweeds emerge as an environmentally friendly food source, offering a promising alternative for food production. The aim of this study was to characterize the brown seaweed Sargassum filipendula from the coast of São Paulo, Brazil, regarding its nutritional and techno-functional properties using two dehydration methods, oven drying and lyophilized. A commercial dried sample was used as a control. Analyses of proximate composition, mineral determination, amino acid determination, antioxidant capacity, pH, color, scanning electron microscopy, X-ray diffraction, thermal properties, Fourier-transform infrared spectroscopy, and techno-functional properties were performed. Seaweed flours showed significant differences in physicochemical composition, with dietary fiber content of seaweed flours exceeding 70 %. Glutamic and aspartic acids were the most abundant amino acids, with contents of 88.56 and 56.88 mg/g of protein in Sargassum oven drying. Both for antioxidant potential and bioactive compounds, Sargassum lyophilized flours showed the highest levels of compounds. Sargassum lyophilized exhibited lighter color compared to Sargassum oven drying and Sargassum commercial. Emulsion formation, foam formation capacity and stability were higher in Sargassum lyophilized, as well as water and oil absorption. The results suggest that seaweeds can be used to formulate a wide variety of food products, such as sausages, bread, cakes, soups, and sauces.
Asunto(s)
Antioxidantes , Liofilización , Valor Nutritivo , Sargassum , Algas Marinas , Sargassum/química , Antioxidantes/análisis , Algas Marinas/química , Fibras de la Dieta/análisis , Brasil , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Aminoácidos/análisis , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo , Desecación/métodosRESUMEN
The search for functional foods grows constantly, and in this demand, the supply of industries that seek to produce and sell supplements also grows, as is the case of probiotics freely sold in pharmacies and supermarkets. Given a large number of foods with probiotic appeal and supplements sold without the need for a nutritional or medical prescription, this study came up to evaluate the viability of commercial probiotic cells, through in vitro gastrointestinal simulation and analyzing the information present in their labeling. Eleven commercial probiotic samples were analyzed, and viable cell counts were performed before and after in vitro simulation. These products usually use appealing labeling and induce the consumer to purchase these probiotics, which often do not offer the benefits described on the packaging. The results showed that only two samples had the initial concentration indicated on their labeling and four samples offered a concentration of 3 log CFU g-1 in the ileum portion. All samples had a reduction in concentration during the gastrointestinal simulation, which varied from 1 to 4 log CFU g-1, but most do not fulfill the offer of a probiotic supplement, and there should be more inspection and control over the commercialization of this product niche.