Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 924: 171631, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38467254

RESUMEN

Soil acidification is an ongoing problem in intensively cultivated croplands due to inefficient and excessive nitrogen (N) fertilization. We collected high-resolution data comprising 19,969 topsoil (0-20 cm) samples from the Land Use and Coverage Area frame Survey (LUCAS) of the European commission in 2009 to assess the impact of N fertilization on buffering substances such as carbonates and base cations. We have only considered the impacts of mineral fertilizers from the total added N, and a N use efficiency of 60 %. Nitrogen fertilization adds annually 6.1 × 107 kmol H+ to European croplands, leading to annual loss of 6.1 × 109 kg CaCO3. Assuming similar acidification during the next 50 years, soil carbonates will be completely removed from 3.4 × 106 ha of European croplands. In carbonate-free soils, annual loss of 2.1 × 107 kmol of basic cations will lead to strong acidification of at least 2.6 million ha of European croplands within the next 50 years. Inorganic carbon and basic cation losses at such rapid scale tremendously drop the nutrient status and production potential of croplands. Soil liming to ameliorate acidity increases pH only temporarily and with additional financial and environmental costs. Only the direct loss of soil carbonate stocks and compensation of carbonate-related CO2 correspond to about 1.5 % of the proposed budget of the European commission for 2023. Thus, controlling and decreasing soil acidification is crucial to avoid degradation of agricultural soils, which can be done by adopting best management practices and increasing nutrient use efficiency. Regular screening or monitoring of carbonate and base cations contents, especially for soils, where the carbonate stocks are at critical levels, are urgently necessary.

2.
Environ Monit Assess ; 195(5): 607, 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37095387

RESUMEN

Inorganic carbon is the largest source of carbon in terrestrial surface, particularly in arid and semiarid regions, including the Chahardowli Plain in western Iran. Inorganic carbon plays an equal or greater role than organic soil carbon in these areas, although less attention has been paid in quantifying their variability. The objective of this study was to model and map calcium carbonate equivalent (CCE) presenting inorganic carbon in soil using machine learning and digital soil mapping techniques. Chahardowli Plain in foothills of the Zagros Mountains in the southeast of Kurdistan Province in Iran was taken as a case study area. CCE was measured at 0-5, 5-15, 15-30, 30-60, and 60-100 cm depths following GloalSoilMap.net project specifications. A total of 145 samples were collected from 30 soil profiles using the conditional Latin hypercube (cLHS) method of sampling. Relationships between CCE and environmental predictors were modeled using random forest (RF) and decision tree (DT) models. In general, the RF model performed slightly superior than the DT model. The mean value of CCE increased with soil depth, from 3.5% (0-5 cm) to 63.8% (30-60 cm). Remote sensing (RS) variables and terrestrial variables were equally important. The importance of RS variables was higher at the surface than terrestrial variables, and vice versa. The most significant variables were Channel Network Base Level (CNBL) variable and Difference Vegetation Index (DVI) with the same variable importance value (21.1%). In areas affected by river activities, the use of the CNBL and vertical distance to channel networks (VDCN) as variables in digital soil mapping (DSM) could increase the accuracy of soil property prediction maps. The VDCN played a principal role in soil distribution in the study area by affecting the rate of discharge and, thus, erosion and sedimentation. A high percentage of carbonate in parts of the region could exacerbate nutrient deficiencies for most crops and provide information for sustainably managing agricultural activity.


Asunto(s)
Carbonato de Calcio , Monitoreo del Ambiente , Monitoreo del Ambiente/métodos , Suelo , Carbono/análisis , Aprendizaje Automático
4.
Environ Sci Pollut Res Int ; 28(6): 6796-6810, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33011943

RESUMEN

Accurate prediction of the dust concentration (DC) is necessary to reduce its undesirable environmental effects in different geographical areas. Although the adaptive neuro-fuzzy inference system (ANFIS) is a powerful model for predicting dust events, no attempt has been made to investigate its uncertainty and interpretability. In this study, therefore, the uncertainty of the ANFIS model was quantified using uncertainty estimation based on local errors and clustering methods. Furthermore, we used a model-agnostic interpretation to make the ANFIS model interpretable. In addition, we used the bat optimization algorithm (BAT) to increase the prediction accuracy of the ANFIS model. Seven explanatory variables were chosen for predicting DC in the cold and warm months across semi-arid regions of Iran. The results showed that the ANFIS+BAT model increased the correlation coefficient by 10% and 16% for predicting DC in the cold and warm months, respectively, compared with the ANFIS model. Furthermore, the uncertainty analysis indicated a lower prediction interval (i.e., lower uncertainty) for the ANFIS+BAT model compared with the ANFIS model for predicting DC in the cold and warm months. In addition, the model-agnostic interpretation tool findings indicated the highest contributions of air temperature and maximum wind speed for predicting DC in the cold and warm months, respectively. Prediction of DC using the proposed model will allow decision-makers to better plan for measures to mitigate the risks of wind erosion and air pollution.


Asunto(s)
Polvo , Lógica Difusa , Algoritmos , Irán , Incertidumbre
5.
Sci Total Environ ; 664: 296-311, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-30743123

RESUMEN

Geospatial computation, data transformation to a relevant statistical software, and step-wise quantitative performance assessment can be cumbersome, especially when considering that the entire modelling procedure is repeatedly interrupted by several input/output steps, and the self-consistency and self-adaptive response to the modelled data and the features therein are lost while handling the data from different kinds of working environments. To date, an automated and a comprehensive validation system, which includes both the cutoff-dependent and -independent evaluation criteria for spatial modelling approaches, has not yet been developed for GIS based methodologies. This study, for the first time, aims to fill this gap by designing and evaluating a user-friendly model validation approach, denoted as Performance Measure Tool (PMT), and developed using freely available Python programming platform. The considered cutoff-dependent criteria include receiver operating characteristic (ROC) curve, success-rate curve (SRC) and prediction-rate curve (PRC), whereas cutoff-independent consist of twenty-one performance metrics such as efficiency, misclassification rate, false omission rate, F-score, threat score, odds ratio, etc. To test the robustness of the developed tool, we applied it to a wide variety of geo-environmental modelling approaches, especially in different countries, data, and spatial contexts around the world including, the USA (soil digital modelling), Australia (drought risk evaluation), Vietnam (landslide studies), Iran (flood studies), and Italy (gully erosion studies). The newly proposed PMT is demonstrated to be capable of analyzing a wide range of environmental modelling results, and provides inclusive performance evaluation metrics in a relatively short time and user-convenient framework whilst each of the metrics is used to address a particular aspect of the predictive model. Drawing on the inferences, a scenario-based protocol for model performance evaluation is suggested.

6.
Mar Pollut Bull ; 124(1): 155-170, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28712771

RESUMEN

The distribution and sources of PAHs and n-alkanes were determined in the surface sediments from 202 locations in Shadegan international wetland with 537,700ha. The concentrations of total n-alkanes and PAHs ranged from 395.3 to 14933.46µgg-1dw and 593.74 to 53393.86ngg-1dw, respectively. Compared with other worldwide surveys, the concentration and contamination of sedimentary hydrocarbons were classified very high. A common petrogenic hydrocarbon source was strongly suggested in all sites by n-alkanes' profile with a Cmax at n-C20, Pr/Ph and CPI ratios<1 in all sites, and high percentage of UCM. Typical profile of petrogenic PAHs with alkyl-substituted naphthalenes and phenanthrenes predominance, various PAH ratios and multivariate analysis indicated that PAHs were mainly derived from petrogenic source. Naphthalene-derived compounds in all sites were significantly above their ERL, and adversely affected benthic biota. 92% of the sites had mean ERM values<0.1, indicating high ecological risk on the wildlife of the wetland.


Asunto(s)
Alcanos/análisis , Sedimentos Geológicos/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Biota , Monitoreo del Ambiente , Irán , Medición de Riesgo , Humedales
7.
Environ Monit Assess ; 188(12): 699, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27900655

RESUMEN

Understanding the occurrence of erosion processes at large scales is very difficult without studying them at small scales. In this study, soil erosion parameters were investigated at micro-scale and macro-scale in forests in northern Iran. Surface erosion and some vegetation attributes were measured at the watershed scale in 30 parcels of land which were separated into 15 fire-affected (burned) forests and 15 original (unburned) forests adjacent to the burned sites. The soil erodibility factor and splash erosion were also determined at the micro-plot scale within each burned and unburned site. Furthermore, soil sampling and infiltration studies were carried out at 80 other sites, as well as the 30 burned and unburned sites, (a total of 110 points) to create a map of the soil erodibility factor at the regional scale. Maps of topography, rainfall, and cover-management were also determined for the study area. The maps of erosion risk and erosion risk potential were finally prepared for the study area using the Revised Universal Soil Loss Equation (RUSLE) procedure. Results indicated that destruction of the protective cover of forested areas by fire had significant effects on splash erosion and the soil erodibility factor at the micro-plot scale and also on surface erosion, erosion risk, and erosion risk potential at the watershed scale. Moreover, the results showed that correlation coefficients between different variables at the micro-plot and watershed scales were positive and significant. Finally, assessment and monitoring of the erosion maps at the regional scale showed that the central and western parts of the study area were more susceptible to erosion compared with the western regions due to more intense crop-management, greater soil erodibility, and more rainfall. The relationships between erosion parameters and the most important vegetation attributes were also used to provide models with equations that were specific to the study region. The results of this paper can be useful for better understanding erosion processes at the micro-scale and macro-scale in any region having similar vegetation attributes to the forests of northern Iran.


Asunto(s)
Monitoreo del Ambiente/métodos , Incendios , Suelo/química , Conservación de los Recursos Naturales/métodos , Bosques , Irán , Modelos Teóricos , Riesgo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA