Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 124(1): 229-239, 2020 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-31825215

RESUMEN

In this work, we investigate the degradation process of 1-chlorobutane, initiated by OH radicals, under atmospheric conditions (air pressure of 750 Torr and 296 K) from both experimental and theoretical approaches. In the first one, a relative kinetic method was used to obtain the rate coefficient for this reaction, while the products were identified for the first time (1-chloro-2-butanone, 1-chloro-2-butanol, 4-chloro-2-butanone, 3-hydroxy-butanaldehyde, and 3-chloro-2-butanol) using mass spectrometry, allowing suggesting a reaction mechanism. The theoretical calculations, for the reactive process, were computed using the BHandHLYP/6-311++G(d,p) level of theory, and the energies for all of the stationary points were refined at the CCSD(T) level. Five conformers for 1-chlorobutane and 33 reactive channels with OH radicals were found, which were considered to calculate the thermal rate coefficient (as the sum of the site-specific rate coefficients using canonical transition state theory). The theoretical rate coefficient (1.8 × 10-12 cm3 molecule-1 s-1) is in good agreement with the experimental value (2.22 ± 0.50) × 10-12 cm3 molecule-1 s-1 determined in this work. Finally, environmental impact indexes were calculated and a discussion on the atmospheric implications due to the emissions of this compound into the troposphere was given.

2.
Phys Chem Chem Phys ; 20(44): 27885-27896, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30378613

RESUMEN

The rate coefficients for the reactions of OH with ethanol and n-propanol were determined by a relative method in a smog chamber at 294 K, 1 atm of air or N2 and a wide range of humidity. The rate coefficients for both reactions show a quadratic dependence on the water concentration as in the case of the reaction of OH with methanol (Jara-Toro et al. Angew. Chem., Int. Ed., 2017, 56, 2166). The detailed mechanism responsible for the reaction acceleration was studied theoretically at the uMP2/aug-cc-pVDZ level of theory while the electronic energies of all the structures were refined at the uCCSD(T)/aug-cc-pVDZ level. From these results it is suggested that the catalytic effect of two water molecules is due to two cooperative effects in the reactions between the ROH(H2O) and OH(H2O) equilibrium complexes: (1) an enhanced capture cross-section as a consequence of the larger dipolar moment of the ROH(H2O) and OH(H2O) complexes as compared to those of the free reactants ROH and OH and (2) a strong stabilization of the TSs below the energy of the reactants that leads to a very fast decomposition of the pre-reactive complexes to products with an extremely low probability of dissociation back to the reactants. The tropospheric lifetime of these alcohols is also shown to strongly depend on the humidity, suggesting the need to incorporate this dependence in global atmospheric models.

3.
Environ Sci Pollut Res Int ; 24(33): 26049-26059, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28942560

RESUMEN

Rate coefficients for the gas-phase reactions of OH radicals and Cl atoms with 1-methoxy-2-propanone (1-M-2-PONE), 1-methoxy-2-propanol (1-M-2-POL), and 1-methoxy-2-butanol (1-M-2-BOL) were determined at room temperature and atmospheric pressure using a conventional relative-rate technique. The following absolute rate coefficients were derived: k 1(OH + 1-M-2-PONE) = (0.64 ± 0.13) × 10-11, k 2(OH + 1-M-2-BOL) = (2.19 ± 0.23) × 10-11, k 3(Cl + 1-M-2-PONE = (1.07 ± 0.24) × 10-10, k 4(Cl + 1-M-2-POL) = (2.28 ± 0.21) × 10-10, and k 5 (Cl + 1-M-2-BOL) = (2.79 ± 0.23) × 10-10, in units of cm3 molecule-1 s-1. This is the first experimental determination of k 2-k 5. These rate coefficients were used to discuss the influence of the structure on the reactivity of the studied polyfunctional organic compounds. The atmospheric implications for 1-M-2-PONE, 1-M-2-POL, and 1-M-2-BOL and their reactions were investigated estimating atmospheric parameters such as lifetimes, global warming potentials, and average photochemical ozone production. The approximate nature of these values was stressed considering that the studied oxygenated volatile organic compounds are short-lived compounds for which the calculated parameters may vary depending on chemical composition, location, and season at the emission points.


Asunto(s)
Atmósfera/química , Cloro/química , Éteres/química , Radical Hidroxilo/química , Calentamiento Global , Cinética , Ozono , Compuestos Orgánicos Volátiles/química
4.
Angew Chem Int Ed Engl ; 56(8): 2166-2170, 2017 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-28079951

RESUMEN

The rate coefficient for the reaction CH3 OH+OH was determined by means of a relative method in a simulation chamber under quasi-real atmospheric conditions (294 K, 1 atm of air) and variable humidity or water concentration. Under these conditions, a quadratic dependence of the rate coefficient for the reaction CH3 OH+OH on the water concentration was found. Thus the catalytic effect of water is not only important at low temperatures, but also at room temperature. The detailed mechanism responsible of the reaction acceleration is still unknown. However, this dependence should be included in the atmospheric global models since it is expected to be important in humid regions as in the tropics. Additionally, it could explain several differences regarding the global and local atmospheric concentration of methanol in tropical areas, for which many speculations about the sinks and sources of methanol have been reported.

5.
Chemphyschem ; 11(18): 4053-9, 2010 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-20853389

RESUMEN

The relative rate technique has been used to determine the rate constants of the reactions of OH radicals with CF(3)CCl=CCl(2) (k(1)), CF(3)CCl=CClCF(3) (k(2)) and CF(3)CF=CFCF(3) (k(3)). Experiments were carried out at (298±2) K and atmospheric pressure using ultrapure nitrogen as gas bath. The decay rates of the organic species were measured relative to those of ethane, methanol, acetone, chloroethane and 2-butanone. The following rate constants were derived in units of cm(3) molecule(-1) s(-1): k(1)= (10±1)×10(-13), k(2)=(2.1±0.2)×10(-13) and k(3)=(3.7±0.2)×10(-13). This is the first experimental determination of k(1) and k(2). The rate constants obtained are compared with previous literature data to establish reactivity trends and are used to estimate the atmospheric lifetimes of the studied perhaloalkenes. From the calculated lifetimes, using an average global concentration of hydroxyl radicals, the atmospheric loss of these compounds by the OH-initiated oxidation was determined. Also, estimations have been made of the ozone depletion potential (ODP), the radiative forcing efficiency (RE), the halocarbon global warming potential (HGWP) and the global warming potential (GWP) of the perhaloalkenes. The approximate nature of these values is stressed considering that these are short-lived compounds for which these atmospheric parameters may vary according to latitude and season.

6.
J Phys Chem A ; 112(19): 4444-50, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18433167

RESUMEN

Rate coefficients for the gas-phase reactions of OH radicals with four unsaturated alcohols, 3-methyl-3-buten-1-ol (k1), 2-buten-1-ol (k2), 2-methyl-2-propen-1-ol (k3) and 3-buten-1-ol (k4), were measured using two different techniques, a conventional relative rate method and the pulsed laser photolysis-laser induced fluorescence technique. The Arrhenius rate coefficients (in units of cm(3) molecule(-1) s(-1)) over the temperature range 263-371 K were determined from the kinetic data obtained as k1 = (5.5 +/- 1.0) x 10(-12) exp [(836 +/- 54)/T]; k2 = (6.9 +/- 0.9) x 10(-12) exp [(744 +/- 40)/T]; k3 = (10 +/- 1) x 10(-12) exp [(652 +/- 27)/T]; and k4 = (4.0 +/- 0.4) x 10(-12) exp [(783 +/- 32)/T]. At 298 K, the rate coefficients obtained by the two methods for each of the alcohols studied were in good agreement. The results are presented and compared with those obtained previously for the same and related reactions of OH radicals. Reactivity factors for substituent groups containing the hydroxyl group are determined. The atmospheric implications for the studied alcohols are considered briefly.


Asunto(s)
Alcoholes/química , Radical Hidroxilo/química , Temperatura , Alquenos/química , Atmósfera/química , Cinética , Nitratos/química , Ozono/química , Relación Estructura-Actividad , Factores de Tiempo
7.
J Phys Chem A ; 110(38): 11091-7, 2006 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-16986842

RESUMEN

Absolute rate coefficients for the gas-phase reactions of ground-state oxygen atoms with CCl(2)=CH(2) (1), (Z)-CHCl=CHCl (2) and CCl(2)=CCl(2) (3) have been measured directly using the fast flow discharge technique. The experiments were carried out under pseudo-first-order conditions with [O((3)P)](0) << [chloroethene](0). The temperature dependences of the reactions of O((3)P) with CCl(2)=CH(2), (Z)-CHCl=CHCl and CCl(2)=CCl(2) were studied in the range 298-359 K. The kinetic data obtained were used to derive the following Arrhenius expressions (in units of cm(3) molecule(-1) s(-1)): k(1) = (1.82 +/- 1.29) x 10(-11) exp[-(12.63 +/- 0.97) x 10(3)/RT], k(2) = (1.56 +/- 0.92) x 10(-11) exp[-(16.68 +/- 1.54) x 10(3)/RT], k(3) = (4.63 +/- 1.38) x 10(-11) exp[-(19.59 +/- 3.21) x 10(3)/RT]. This is the first temperature dependence study of the reactions of O((3)P) atoms with (Z)-CHCl=CHCl and CCl(2)=CCl(2). All the rate coefficients display a positive temperature dependence and pressure independence, which points to the importance of the irreversibility of the addition mechanism for these reactions. The obtained rate coefficients are compared with previous studies carried out mainly at room temperature. The rates of addition of O atoms and OH radicals to the double bond of alkenes at 298 K are related by the expression: log k(OH) = 0.57278 log k(O(3P)) - 4.095. A correlation is presented between the reactivity of chloroethenes toward O atoms and the second-order perturbational term of the frontier molecular orbital theory which carries the contribution of the different atomic orbitals to the HOMO of the chloroethene. To a first approximation, this correlation allows room-temperature rate coefficients to be predicted within +/-25-30% of the measured values.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA