Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Anal Biochem ; 694: 115619, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39025197

RESUMEN

Acute lymphoblastic leukemia (ALL) is a disease of lymphocyte origin predominantly diagnosed in children. While its 5-year survival rate is high, resistance to chemotherapy drugs is still an obstacle. Our aim is to determine differentially expressed genes (DEGs) related to Asparaginase, Daunorubicin, Prednisolone, and Vincristine resistance and identify potential inhibitors via docking. Three datasets were accessed from the Gene Expression Omnibus database; GSE635, GSE19143, and GSE22529. The microarray data was analyzed using R4.2.0 and Bioconductor packages, and pathway and protein-protein interaction analysis were performed. We identified 1294 upregulated DEGs, with 12 genes consistently upregulated in all four resistant groups. KEGG analysis revealed an association with the PI3K-Akt pathway. Among DEGs, 33 hub genes including MDM2 and USP7 were pinpointed. Within common genes, CLDN9 and HS3ST3A1 were subjected to molecular docking against 3556 molecules. Following ADMET analysis, three drugs emerged as potential inhibitors: Flunarizine, Talniflumate, and Eltrombopag. Molecular dynamics analysis for HS3ST3A1 indicated all candidates had the potential to overcome drug resistance, Eltrombopag displaying particularly promising results. This study promotes a further understanding of drug resistance in ALL, introducing novel genes for consideration in diagnostic screening. It also presents potential inhibitor candidates to tackle drug resistance through repurposing.


Asunto(s)
Resistencia a Antineoplásicos , Simulación del Acoplamiento Molecular , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Antineoplásicos/farmacología , Perfilación de la Expresión Génica , Simulación por Computador
3.
Mol Biotechnol ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38954355

RESUMEN

PSMB8 emerges as a prominent gene associated with cancer survival, yet its potential therapeutic role in acute myeloid leukemia (AML) remains unexplored within the existing literature. The principal aim of this study is to systematically screen an expansive library of molecular entities, curated from various databases to identify the prospective inhibitory agents with an affinity for PSMB8. A comprehensive assortment of molecular compounds obtained from the ZINC15 database was subjected to molecular docking simulations with PSMB8 by using the AutoDock tool in PyRx (version 0.9.9) to elucidate binding affinities. Following the docking simulations, a select subset of molecules underwent further investigation through comprehensive ADMET (absorption, distribution, metabolism, excretion, and toxicity) analysis employing AdmetSar and SwissADME tools. Finally, RMSD, RMSF, Rg, and H bond analyses were conducted via GROMACS to determine the best conformationally dynamic molecule that represents the candidate agent for the study. Following rigorous evaluation, Adozelesin, Fiduxosin, and Rimegepant have been singled out based on considerations encompassing bioavailability scores, compliance with filter criteria, and acute oral toxicity levels. Additionally, ligand interaction analysis indicates that Adozelesin and Fiduxosin exhibit an augmented propensity for hydrogen bond formation, a factor recognized for its facilitative role in protein-ligand interactions. After final analyses, we report that Fiduxosin may offer a treatment possibility by reversing the low survival rates caused by PSMB8 high activation in AML. This study represents a strategic attempt to repurpose readily available pharmaceutical agents, potentially obviating the need for de novo drug development, and thereby offering promising avenues for therapeutic intervention in specific diseases.

4.
Ann Hematol ; 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38836918

RESUMEN

Acute lymphoblastic leukemia (ALL) is a hematological malignancy characterized by aberrant proliferation and accumulation of lymphoid precursor cells within the bone marrow. The tyrosine kinase inhibitor (TKI), imatinib mesylate, has played a significant role in the treatment of Philadelphia chromosome-positive ALL (Ph + ALL). However, the achievement of durable and sustained therapeutic success remains a challenge due to the development of TKI resistance during the clinical course.The primary objective of this investigation is to propose a novel and efficacious treatment approach through drug repositioning, targeting ALL and its Ph + subtype by identifying and addressing differentially expressed genes (DEGs). This study involves a comprehensive analysis of transcriptome datasets pertaining to ALL and Ph + ALL in order to identify DEGs associated with the progression of these diseases to identify possible repurposable drugs that target identified hub proteins.The outcomes of this research have unveiled 698 disease-related DEGs for ALL and 100 for Ph + ALL. Furthermore, a subset of drugs, specifically glipizide for Ph + ALL, and maytansine and isoprenaline for ALL, have been identified as potential candidates for therapeutic intervention. Subsequently, cytotoxicity assessments were performed to confirm the in vitro cytotoxic effects of these selected drugs on both ALL and Ph + ALL cell lines.In conclusion, this study offers a promising avenue for the management of ALL and Ph + ALL through drug repurposed drugs. Further investigations are necessary to elucidate the mechanisms underlying cell death, and clinical trials are recommended to validate the promising results obtained through drug repositioning strategies.

5.
J Biomol Struct Dyn ; 41(21): 11818-11831, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36597898

RESUMEN

MTHFR (Methylenetetrahydrofolate reductase) is a pivotal enzyme involved in one-carbon metabolism, which is critical for the proliferation of cancer cells. In line with this, published literature showed that MTHFR knockdown caused impaired growth of multiple types of cancer cells. Moreover, higher MTHFR expression levels were linked to shorter overall survival in hepatocellular carcinoma, adrenocortical carcinoma, and low-grade glioma, bringing the need to design MTHFR inhibitors as a possible treatment option. No competitive inhibitors of MTHFR have been reported as of today. This study aimed to identify potential competitive MTHFR inhibitor candidates using an in silico drug screen. A total of 30470 molecules containing biogenic compounds, FDA-approved drugs, and those in clinical trials were screened against the catalytic pocket of MTHFR in the presence and absence of cofactors. Binding energy and ADMET analysis revealed that Vilanterol (ß2-adrenergic agonist), Selexipag (prostacyclin receptor agonist), and Ramipril Diketopiperazine (ACE inhibitor) are potential competitive inhibitors of MTHFR. Molecular dynamics analyses and MM-PBSA calculations with these compounds particularly revealed the amino acids between 285-290 for ligand binding and highlighted Vilanterol as the strongest candidate for MTHFR inhibition. Our results could guide the development of novel MTHFR inhibitor compounds, which could be inspired by the drugs brought into the spotlight here. More importantly, these potential candidates could be quhickly tested as a repurposing strategy in pre-clinical and clinical studies of the cancers mentioned above.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Neoplasias Hepáticas , Metilenotetrahidrofolato Reductasa (NADPH2) , Humanos , Aminoácidos , Reposicionamiento de Medicamentos , Metilenotetrahidrofolato Reductasa (NADPH2)/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA