Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Chem A ; 118(29): 5359-70, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-25014170

RESUMEN

Deuteron NMR spectra were measured for D2O confined in NaX, NaY, and DY faujasites with various D2O loadings at temperatures ranging from T = 70 K to T = 200 K with the aim to study the molecular mobility of confined water as a function of Si/Al ratio and loading. The recorded spectra were fitted with linear combinations of representative spectral components. At low loading, with the number of water molecules per unit cell close to the abundance of sodium cations, a component related to π-jumps of water deuterons about the 2-fold symmetry axis dominated. For loadings at levels 3 times and 5 times higher than the initial loading level, Pake dublets due to rigid water deuterons dominated the recorded spectra. A set of the quadrupole coupling constant values of localized water deuterons was derived from the analysis of the Pake dublets. Their values were attributed to deuteron positions corresponding to the locations at oxygen atoms in the faujasite framework and locations within hydrogen-bonded water clusters inside faujasite cages. The contributions of the different spectral components were observed to change with increasing temperature according to the Arrhenius law with a characteristic dynamic crossover point at T = 165 K. Below T = 165 K a spectral component was observed whose contribution changed with temperature, yielding the activation energy of about 2 kJ/mol, characteristic for jumps between inversion-related water positions in clusters.

2.
J Phys Chem A ; 118(29): 5371-80, 2014 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-24960399

RESUMEN

Deuteron NMR spectra and spin-lattice relaxation were measured for D2O confined in NaX, NaY, and DY faujasites with various loadings at temperatures ranging from 200 to 310 K with the aim to study molecular mobility of confined water. Hysteresis of spin-lattice relaxation was observed for both DY and NaY(2.4) samples at 500% loading (280 water molecules per unit cell) in a heating-cooling cycle between 264.5 and 277.7 K. The hysteresis is most likely reflecting formation and decomposition of water clusters at different temperature. Spin-lattice relaxation rates obtained from the experiment are consistent with a picture of the fast magnetization exchange between two dynamically different deuteron populations. The observed relaxation behavior as a function of temperature and loading is most likely an effect of interplay between translational and rotational diffusion. Translational diffusion of water molecules is found to be related to the strength of the electrostatic interaction of water oxygen atoms to faujasite sodium cations, whereas water molecule reorientations seem to depend on the strength of hydrogen bonding to faujasite oxygen atoms and the strength of hydrogen bonds between water molecules, at outer and inner positions in water clusters, respectively.


Asunto(s)
Deuterio/química , Teoría Cuántica , Temperatura , Agua/química , Difusión , Espectroscopía de Resonancia Magnética , Simulación de Dinámica Molecular
3.
Solid State Nucl Magn Reson ; 34(1-2): 77-85, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18585902

RESUMEN

Deuteron spin-lattice relaxation and spectra were studied in partially and fully deuterated (NH(4))(2)PdCl(6) in the temperature range 5-300K. The relaxation rate maximum was observed at 45K in (ND(4))(2)PdCl(6). Its value is reduced due to limited jumps by about 33% relative to the theoretical value expected for threefold reorientations. Limited jumps correspond to an N-D vector jumping between six directions on a cone around a Pd-N vector, the angle between the N-D and Pd-N vectors being denoted Delta. This motion makes a part of the quadrupole interaction ineffective in relaxation thus reducing the maximum rate at 45K. The observed reduction leads to the value Delta=21( composite function). Limited jumps are quenched to a large extent at the order-disorder phase transition and consequently a decrease is observed in the rate. Below the transition ND(4)(+) ions reorient between the tetrahedral orientations of the ordered phase, therefore the quadrupole interaction has the full relaxing efficiency. In the 10% deuterated sample the temperature of the rate maximum is shifted to 35K and below 20K the rate itself is one order of magnitude larger than in (ND(4))(2)PdCl(6). The increase is related to (1) the absence of the order-disorder phase transition and (2) to the enhanced mobility of NH(3)D(+) because of its electric dipole moment. Limited jumps are claimed to be the dominant relaxation mechanism below 20K. The relaxation in the disordered 30% deuterated sample is quite similar to that in 10% sample. The 50% and 70% deuterated samples undergo a transition to the ordered phase. The relaxation is biexponential with the characteristic rates somewhat smaller than those in (ND(4))(2)PdCl(6), but approaching them with increasing deuteration. This variation can be explained with different mobilities and varying relative numbers of the various isotopomers NH(4-n)D(n)(+), n=1-4.

4.
J Chem Phys ; 128(18): 184510, 2008 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-18532829

RESUMEN

Deuteron NMR relaxation and spectra were studied at the resonance frequency of 46 MHz in polycrystalline (ND(4))(2)PtCl(6) between 300-5 K. The relaxation rate maximum near 50 K is about 53% smaller than the calculated maximum related to 120 degrees rotations about the threefold symmetry axes of the ammonium ion. The difference is explained by assuming for a N-D vector a total of 24 equilibrium directions, which in groups of six deviate from the nearest Pt-N vector by a certain angle Theta. So-called limited jumps between the directions of each group take place much more frequently than the large-angle rotations, thus rendering a fraction of the deuteron quadrupole coupling ineffective in relaxation. A motional model is presented, which takes into account both these motions simultaneously. A comparison with experimental data leads to Theta=26.0 degrees , in reasonable agreement with earlier neutron diffraction data. A sharp decrease found in the relaxation rate at the order-disorder phase transition temperature of 27.2 K is related to the fact that one of the six equilibrium directions becomes preferred. This leads to a formation of ordered domains, in which the active motion driving the relaxation is 120 degrees rotations. Two components in the spectra found below 55 K are related to domains (broad) and transition regions between domains (narrow). Reasons for the nonexponentiality observed below 20 K are discussed, the most likely explanation being that limited jumps dominate within transition regions and make the corresponding deuterons relax faster than those in domains.

5.
J Chem Phys ; 127(20): 204714, 2007 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-18052453

RESUMEN

Deuteron spin-lattice relaxation was applied to study translational and rotational mobility of CD(4) molecules trapped in the cages of zeolites. Tetrahedral methane molecules are treated as quantum rotators. Relaxation rates related to the intraquadrupole interaction are derived for the T and A+E symmetry species in the presence of large tunneling splittings, consistently with the assumption that A and E species molecules relax at the same rate. An exchange model is presented, which describes the effect on relaxation of CD(4) jumping between two positions characterized by different potentials. While staying at either position bonded to an atom or ion at the cage wall, the molecule has some freedom to move in the vicinity. This causes a time-dependent external electric field gradient, which contributes to the deuteron relaxation rate via the electric quadrupole interaction. Spin conversion transitions couple the relaxation of magnetizations M(T) and M(AE), which is taken into account by reapplying the presented model under somewhat different conditions. Such a two-step procedure leads to successful fits with the experimental results obtained in the range of temperatures roughly 20-200 K for zeolites HY, NaA, and NaMordenite. At higher temperatures CD(4) molecules fly freely across zeolite cages and relaxation changes accordingly, while incoherent tunneling dominates for immobile molecules below 20 K.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA