Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Brain Struct Funct ; 224(8): 2691-2701, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31375980

RESUMEN

Serum response factor (SRF) is a major transcription factor that regulates the expression of several plasticity-associated genes in the brain. Although the developmental expression of SRF in excitatory neurons is crucial for establishing proper hippocampal circuitry, no substantial evidence of its role in unstimulated mature neurons has been provided. The present study used time-controlled, conditional SRF knockout mice and found that the lack of SRF in adult neurons led to decreased actin levels and inactivation of the actin-severing protein cofilin 1 through its increase in phosphorylation at Ser3. The augmentation of cofilin 1 phosphorylation correlated with an alteration of dendritic spine morphology in the dentate gyrus, which was reflected by an increase in the number of spines that clustered into the long-spine category. The changes in spine morphology coincided with a lower amplitude and frequency of miniature excitatory postsynaptic currents. Moreover, SRF knockout animals were hyperactive and exhibited impairments in hippocampus-dependent behaviors, such as digging, marble burying, and nesting. Altogether, our data indicate that the adult deletion of neuronal SRF leads to alterations of spine morphology and function and hippocampus-dependent behaviors. Thus, SRF deletion in adult neurons recapitulates some aspects of morphological, electrophysiological, and behavioral changes that are observed in such psychiatric disorders as schizophrenia and autism spectrum disorders.


Asunto(s)
Conducta Animal/fisiología , Espinas Dendríticas/fisiología , Giro Dentado/citología , Giro Dentado/fisiología , Neuronas/citología , Neuronas/fisiología , Factor de Respuesta Sérica/fisiología , Animales , Potenciales Postsinápticos Excitadores , Femenino , Hipocampo/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Plasticidad Neuronal , Factor de Respuesta Sérica/genética
2.
Proc Natl Acad Sci U S A ; 108(45): 18471-5, 2011 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-22025701

RESUMEN

Long-term memory (LTM) formation has been linked with functional strengthening of existing synapses and other processes including de novo synaptogenesis. However, it is unclear whether synaptogenesis can contribute to LTM formation. Here, using α-calcium/calmodulin kinase II autophosphorylation-deficient (T286A) mutants, we demonstrate that when functional strengthening is severely impaired, contextual LTM formation is linked with training-induced PSD95 up-regulation followed by persistent generation of multiinnervated spines, a type of synapse that is characterized by several presynaptic terminals contacting the same postsynaptic spine. Both PSD95 up-regulation and contextual LTM formation in T286A mutants required signaling by the mammalian target of rapamycin (mTOR). Furthermore, we show that contextual LTM resists destabilization in T286A mutants, indicating that LTM is less flexible when synaptic strengthening is impaired. Taken together, we suggest that activation of mTOR signaling, followed by overexpression of PSD95 protein and synaptogenesis, contributes to formation of invariant LTM when functional strengthening is impaired.


Asunto(s)
Memoria a Largo Plazo , Sinapsis/fisiología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Homólogo 4 de la Proteína Discs Large , Genes Inmediatos-Precoces , Guanilato-Quinasas/farmacología , Hipocampo/metabolismo , Proteínas de la Membrana/farmacología , Ratones , Fosforilación , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA